基因表达数据的双聚类一致性测度研究

V. A. Padilha, A. Carvalho
{"title":"基因表达数据的双聚类一致性测度研究","authors":"V. A. Padilha, A. Carvalho","doi":"10.1109/BRACIS.2018.00100","DOIUrl":null,"url":null,"abstract":"Biclustering algorithms have become one of the main tools for the analysis of gene expression data. They allow the identification of local patterns defined by subsets of genes and subsets of samples, which cannot be detected by traditional clustering algorithms. However, although useful, biclustering is a NP-hard problem. Therefore, the majority of biclustering algorithms look for biclusters optimizing a pre-established coherence measure. In the last 20 years, several heuristics and measures have been published for biclustering. However, most of these publications do not provide an extensive comparison of bicluster coherence measures on practical scenarios. To deal with this problem, this paper analyze the behavior of 15 bicluster coherence measures and external evaluation regarding 9 algorithms from the literature on gene expression datasets. According to the experimental results, there is no clear relation between these measures and assessment using information from gene ontology.","PeriodicalId":405190,"journal":{"name":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Study of Biclustering Coherence Measures for Gene Expression Data\",\"authors\":\"V. A. Padilha, A. Carvalho\",\"doi\":\"10.1109/BRACIS.2018.00100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biclustering algorithms have become one of the main tools for the analysis of gene expression data. They allow the identification of local patterns defined by subsets of genes and subsets of samples, which cannot be detected by traditional clustering algorithms. However, although useful, biclustering is a NP-hard problem. Therefore, the majority of biclustering algorithms look for biclusters optimizing a pre-established coherence measure. In the last 20 years, several heuristics and measures have been published for biclustering. However, most of these publications do not provide an extensive comparison of bicluster coherence measures on practical scenarios. To deal with this problem, this paper analyze the behavior of 15 bicluster coherence measures and external evaluation regarding 9 algorithms from the literature on gene expression datasets. According to the experimental results, there is no clear relation between these measures and assessment using information from gene ontology.\",\"PeriodicalId\":405190,\"journal\":{\"name\":\"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BRACIS.2018.00100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2018.00100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

双聚类算法已成为基因表达数据分析的主要工具之一。它们允许识别由基因子集和样本子集定义的局部模式,这是传统聚类算法无法检测到的。然而,尽管有用,双聚类是一个np困难问题。因此,大多数双聚类算法寻找优化预先建立的相干度量的双聚类。在过去的20年里,针对双聚类已经发表了一些启发式和度量方法。然而,这些出版物中的大多数都没有对实际情况下的双聚类相干度量进行广泛的比较。为了解决这一问题,本文分析了基因表达数据集文献中9种算法的15种双聚类一致性度量的行为和外部评价。实验结果表明,这些措施与利用基因本体信息进行评估之间没有明确的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Study of Biclustering Coherence Measures for Gene Expression Data
Biclustering algorithms have become one of the main tools for the analysis of gene expression data. They allow the identification of local patterns defined by subsets of genes and subsets of samples, which cannot be detected by traditional clustering algorithms. However, although useful, biclustering is a NP-hard problem. Therefore, the majority of biclustering algorithms look for biclusters optimizing a pre-established coherence measure. In the last 20 years, several heuristics and measures have been published for biclustering. However, most of these publications do not provide an extensive comparison of bicluster coherence measures on practical scenarios. To deal with this problem, this paper analyze the behavior of 15 bicluster coherence measures and external evaluation regarding 9 algorithms from the literature on gene expression datasets. According to the experimental results, there is no clear relation between these measures and assessment using information from gene ontology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Data Using Extended Association Rule Network SPt: A Text Mining Process to Extract Relevant Areas from SW Documents to Exploratory Tests Gene Essentiality Prediction Using Topological Features From Metabolic Networks Bio-Inspired and Heuristic Methods Applied to a Benchmark of the Task Scheduling Problem A New Genetic Algorithm-Based Pruning Approach for Optimum-Path Forest
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1