感应电动机电压跌落的人工神经网络分类

V. R. Jadhav, Anupama S. Patil
{"title":"感应电动机电压跌落的人工神经网络分类","authors":"V. R. Jadhav, Anupama S. Patil","doi":"10.1109/ICESA.2015.7503334","DOIUrl":null,"url":null,"abstract":"Currently, the voltage sag is the major power quality issue in the power system and in an industry, which are occurred due to loss of load, faults, suddenly energization of the load, transformers and capacitors etc. These voltage sags will not be easily identified by the operators. Therefore, there is need to detect and analyze the voltage sag. In this paper, Wavelet Transform and Artificial Neural Network (ANN) are used for evaluating such voltage sag events. Here, ANN is machine tool which is more compatible for the pattern classification, estimation and other operations.","PeriodicalId":259816,"journal":{"name":"2015 International Conference on Energy Systems and Applications","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Classification of voltage sags at Induction Motor by Artificial Neural Network\",\"authors\":\"V. R. Jadhav, Anupama S. Patil\",\"doi\":\"10.1109/ICESA.2015.7503334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, the voltage sag is the major power quality issue in the power system and in an industry, which are occurred due to loss of load, faults, suddenly energization of the load, transformers and capacitors etc. These voltage sags will not be easily identified by the operators. Therefore, there is need to detect and analyze the voltage sag. In this paper, Wavelet Transform and Artificial Neural Network (ANN) are used for evaluating such voltage sag events. Here, ANN is machine tool which is more compatible for the pattern classification, estimation and other operations.\",\"PeriodicalId\":259816,\"journal\":{\"name\":\"2015 International Conference on Energy Systems and Applications\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Energy Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICESA.2015.7503334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Energy Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICESA.2015.7503334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

电压暂降是目前电力系统和工业中主要的电能质量问题,主要是由于负载的丢失、故障、负载的突然上电、变压器和电容器等引起的。这些电压跌落不容易被操作人员识别。因此,有必要对电压暂降进行检测和分析。本文采用小波变换和人工神经网络(ANN)对电压暂降事件进行评估。在这里,人工神经网络是一种更适合模式分类、估计等操作的机床。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of voltage sags at Induction Motor by Artificial Neural Network
Currently, the voltage sag is the major power quality issue in the power system and in an industry, which are occurred due to loss of load, faults, suddenly energization of the load, transformers and capacitors etc. These voltage sags will not be easily identified by the operators. Therefore, there is need to detect and analyze the voltage sag. In this paper, Wavelet Transform and Artificial Neural Network (ANN) are used for evaluating such voltage sag events. Here, ANN is machine tool which is more compatible for the pattern classification, estimation and other operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance assessment of steel reheating furnace GREEN SOLUTION (GS): A new initiative for Energy Efficient Computing where Humans and Machines work together Ingenious energy monitoring, control and management of electrical supply Smart parking management system using RFID and OCR MLP-neural network based detection and classification of Power Quality Disturbances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1