面向知识挖掘的联合优化:制造工艺参数评价

C.X.H. Tang, H. Lau
{"title":"面向知识挖掘的联合优化:制造工艺参数评价","authors":"C.X.H. Tang, H. Lau","doi":"10.1109/ICIME.2009.119","DOIUrl":null,"url":null,"abstract":"In various kinds of manufacturing production, predicting the influence of process parameters in terms of machine performance is a necessity as they may have a serious impact on product quality as well as on the probability of machine failure. To address this issue, this paper presents a novel knowledge-based algorithm embedded with Artificial Intelligence for evaluating the overall suitability of adopting the predicted control parameters suggested by domain experts. The originality of this research is that the proposed knowledge-based system is equipped with fuzzy-guided genetic algorithm, enabling the identification of the best set of process parameters. Simulation using the RIE machine is provided to validate the practicability of the proposed approach.","PeriodicalId":445284,"journal":{"name":"2009 International Conference on Information Management and Engineering","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Optimization for Knowledge Mining: Evaluating Parameters of Manufacturing Processes\",\"authors\":\"C.X.H. Tang, H. Lau\",\"doi\":\"10.1109/ICIME.2009.119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In various kinds of manufacturing production, predicting the influence of process parameters in terms of machine performance is a necessity as they may have a serious impact on product quality as well as on the probability of machine failure. To address this issue, this paper presents a novel knowledge-based algorithm embedded with Artificial Intelligence for evaluating the overall suitability of adopting the predicted control parameters suggested by domain experts. The originality of this research is that the proposed knowledge-based system is equipped with fuzzy-guided genetic algorithm, enabling the identification of the best set of process parameters. Simulation using the RIE machine is provided to validate the practicability of the proposed approach.\",\"PeriodicalId\":445284,\"journal\":{\"name\":\"2009 International Conference on Information Management and Engineering\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Information Management and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIME.2009.119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Information Management and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIME.2009.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在各种制造生产中,预测工艺参数对机器性能的影响是必要的,因为它们可能对产品质量和机器故障的概率产生严重影响。为了解决这一问题,本文提出了一种嵌入人工智能的基于知识的算法,用于评估采用领域专家建议的预测控制参数的整体适用性。本研究的创新之处在于所提出的基于知识的系统配备了模糊引导遗传算法,能够识别出最佳的工艺参数集。利用RIE机器进行了仿真,验证了所提方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint Optimization for Knowledge Mining: Evaluating Parameters of Manufacturing Processes
In various kinds of manufacturing production, predicting the influence of process parameters in terms of machine performance is a necessity as they may have a serious impact on product quality as well as on the probability of machine failure. To address this issue, this paper presents a novel knowledge-based algorithm embedded with Artificial Intelligence for evaluating the overall suitability of adopting the predicted control parameters suggested by domain experts. The originality of this research is that the proposed knowledge-based system is equipped with fuzzy-guided genetic algorithm, enabling the identification of the best set of process parameters. Simulation using the RIE machine is provided to validate the practicability of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Rekeying Protocol for 802.11s Key Management Prediction of Sunspot Series Using BiLinear Recurrent Neural Network Research on Index System of Dynamic Customer Segmentation Based on the Case Study of China Telecom E-learning and its Impact to the Educational System in the Arab World A Next-Gen Network Switch Software Automation Upgrade Method Based on a Two-step Inference Expert System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1