智能城市系统物联网传感

V. Kochan, Oleksandr Matsiuk, N. Kunanets, V. Pasichnyk, Oleksiy Roshchupkin, A. Sachenko, I. Turchenko, O. Duda, V. Semaniuk, Svitlana Romaniv
{"title":"智能城市系统物联网传感","authors":"V. Kochan, Oleksandr Matsiuk, N. Kunanets, V. Pasichnyk, Oleksiy Roshchupkin, A. Sachenko, I. Turchenko, O. Duda, V. Semaniuk, Svitlana Romaniv","doi":"10.1109/IDAACS.2019.8924423","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) includes a large set of sensors of various physical quantities, operating principles and parameters. In this case, sensor errors are traditionally dominant in measuring channels. In this paper general methods of increasing the accuracy of sensors using neural networks are considered. Due to the generalization of properties, neural networks can significantly improve the accuracy of sensors with reduced complexity of the transition to their individual transformation functions.","PeriodicalId":415006,"journal":{"name":"2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensing in IoT for Smart City Systems\",\"authors\":\"V. Kochan, Oleksandr Matsiuk, N. Kunanets, V. Pasichnyk, Oleksiy Roshchupkin, A. Sachenko, I. Turchenko, O. Duda, V. Semaniuk, Svitlana Romaniv\",\"doi\":\"10.1109/IDAACS.2019.8924423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Internet of Things (IoT) includes a large set of sensors of various physical quantities, operating principles and parameters. In this case, sensor errors are traditionally dominant in measuring channels. In this paper general methods of increasing the accuracy of sensors using neural networks are considered. Due to the generalization of properties, neural networks can significantly improve the accuracy of sensors with reduced complexity of the transition to their individual transformation functions.\",\"PeriodicalId\":415006,\"journal\":{\"name\":\"2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)\",\"volume\":\"160 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDAACS.2019.8924423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAACS.2019.8924423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

物联网(IoT)包括大量具有各种物理量、工作原理和参数的传感器。在这种情况下,传感器误差传统上在测量通道中占主导地位。本文讨论了利用神经网络提高传感器精度的一般方法。由于属性的泛化,神经网络可以显著提高传感器的精度,同时降低了转换到单个变换函数的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sensing in IoT for Smart City Systems
The Internet of Things (IoT) includes a large set of sensors of various physical quantities, operating principles and parameters. In this case, sensor errors are traditionally dominant in measuring channels. In this paper general methods of increasing the accuracy of sensors using neural networks are considered. Due to the generalization of properties, neural networks can significantly improve the accuracy of sensors with reduced complexity of the transition to their individual transformation functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Method for Optimum Placement of Access Points in Indoor Positioning Systems On Development of Machine Learning Models with Aim of Medical Differential Diagnostics of the Comorbid States Business Models for Wireless AAL Systems — Financing Strategies Accuracy Enhancement of a Blind Image Steganalysis Approach Using Dynamic Learning Rate-Based CNN on GPUs Human-Machine Interaction in the Remote Control System of Electric Charging Stations Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1