一种结合发音变化的辨别性训练方法用于困难语音自动识别

Woo Kyeong Seong, Nam Kyun Kim, H. Ha, H. Kim
{"title":"一种结合发音变化的辨别性训练方法用于困难语音自动识别","authors":"Woo Kyeong Seong, Nam Kyun Kim, H. Ha, H. Kim","doi":"10.1109/APSIPA.2016.7820840","DOIUrl":null,"url":null,"abstract":"While dysarthric speech recognition can be a convenient interface for dysarthric speakers, it is hard to collect enough speech data to overcome the underestimation problem of acoustic models. In addition, there are lots of pronunciation variations in the collected database due to the paralysis of the articulator of dysarthric speakers. Thus, a discriminative training method is proposed for improving the performance of such resource-limited dysarthric speech recognition. The proposed method is applied to subspace Gaussian mixture modeling by incorporating pronunciation variations into a conventional minimum phone error discriminative training method.","PeriodicalId":409448,"journal":{"name":"2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A discriminative training method incorporating pronunciation variations for dysarthric automatic speech recognition\",\"authors\":\"Woo Kyeong Seong, Nam Kyun Kim, H. Ha, H. Kim\",\"doi\":\"10.1109/APSIPA.2016.7820840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While dysarthric speech recognition can be a convenient interface for dysarthric speakers, it is hard to collect enough speech data to overcome the underestimation problem of acoustic models. In addition, there are lots of pronunciation variations in the collected database due to the paralysis of the articulator of dysarthric speakers. Thus, a discriminative training method is proposed for improving the performance of such resource-limited dysarthric speech recognition. The proposed method is applied to subspace Gaussian mixture modeling by incorporating pronunciation variations into a conventional minimum phone error discriminative training method.\",\"PeriodicalId\":409448,\"journal\":{\"name\":\"2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSIPA.2016.7820840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2016.7820840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

虽然困难语音识别可以为困难语音说话者提供方便的接口,但很难收集足够的语音数据来克服声学模型的低估问题。此外,由于发音困难的说话者的发音麻痹,在收集到的数据库中存在大量的发音变异。因此,我们提出了一种判别训练方法来提高这种资源有限的困难语音识别的性能。该方法将语音变化与传统的最小电话误差判别训练方法相结合,应用于子空间高斯混合建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A discriminative training method incorporating pronunciation variations for dysarthric automatic speech recognition
While dysarthric speech recognition can be a convenient interface for dysarthric speakers, it is hard to collect enough speech data to overcome the underestimation problem of acoustic models. In addition, there are lots of pronunciation variations in the collected database due to the paralysis of the articulator of dysarthric speakers. Thus, a discriminative training method is proposed for improving the performance of such resource-limited dysarthric speech recognition. The proposed method is applied to subspace Gaussian mixture modeling by incorporating pronunciation variations into a conventional minimum phone error discriminative training method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bilateral hemiface feature representation learning for pose robust facial expression recognition Voice-pathology analysis based on AR-HMM Locality sensitive discriminant analysis for speaker verification On the training of DNN-based average voice model for speech synthesis A study on target feature activation and normalization and their impacts on the performance of DNN based speech dereverberation systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1