云计算中心使用M/M/c/r排队系统服务并行渲染作业的性能分析

Xiulin Li, Li Pan, Jiwei Huang, Shijun Liu, Yuliang Shi, Li-zhen Cui, C. Pu
{"title":"云计算中心使用M/M/c/r排队系统服务并行渲染作业的性能分析","authors":"Xiulin Li, Li Pan, Jiwei Huang, Shijun Liu, Yuliang Shi, Li-zhen Cui, C. Pu","doi":"10.1109/ICDCS.2017.132","DOIUrl":null,"url":null,"abstract":"Performance analysis is crucial to the successful development of cloud computing paradigm. And it is especially important for a cloud computing center serving parallelizable application jobs, for determining a proper degree of parallelism could reduce the mean service response time and thus improve the performance of cloud computing obviously. In this paper, taking the cloud based rendering service platform as an example application, we propose an approximate analytical model for cloud computing centers serving parallelizable jobs using M/M/c/r queuing systems, by modeling the rendering service platform as a multi-station multi-server system. We solve the proposed analytical model to obtain a complete probability distribution of response time, blocking probability and other important performance metrics for given cloud system settings. Thus this model can guide cloud operators to determine a proper setting, such as the number of servers, the buffer size and the degree of parallelism, for achieving specific performance levels. Through extensive simulations based on both synthetic data and real-world workload traces, we show that our proposed analytical model can provide approximate performance prediction results for cloud computing centers serving parallelizable jobs, even those job arrivals follow different distributions.","PeriodicalId":127689,"journal":{"name":"2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Performance Analysis of Cloud Computing Centers Serving Parallelizable Rendering Jobs Using M/M/c/r Queuing Systems\",\"authors\":\"Xiulin Li, Li Pan, Jiwei Huang, Shijun Liu, Yuliang Shi, Li-zhen Cui, C. Pu\",\"doi\":\"10.1109/ICDCS.2017.132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performance analysis is crucial to the successful development of cloud computing paradigm. And it is especially important for a cloud computing center serving parallelizable application jobs, for determining a proper degree of parallelism could reduce the mean service response time and thus improve the performance of cloud computing obviously. In this paper, taking the cloud based rendering service platform as an example application, we propose an approximate analytical model for cloud computing centers serving parallelizable jobs using M/M/c/r queuing systems, by modeling the rendering service platform as a multi-station multi-server system. We solve the proposed analytical model to obtain a complete probability distribution of response time, blocking probability and other important performance metrics for given cloud system settings. Thus this model can guide cloud operators to determine a proper setting, such as the number of servers, the buffer size and the degree of parallelism, for achieving specific performance levels. Through extensive simulations based on both synthetic data and real-world workload traces, we show that our proposed analytical model can provide approximate performance prediction results for cloud computing centers serving parallelizable jobs, even those job arrivals follow different distributions.\",\"PeriodicalId\":127689,\"journal\":{\"name\":\"2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS.2017.132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2017.132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

性能分析对云计算范式的成功开发至关重要。对于服务于可并行应用程序作业的云计算中心来说,确定适当的并行度可以减少平均服务响应时间,从而明显提高云计算的性能,这一点尤为重要。本文以基于云的渲染服务平台为例,通过将渲染服务平台建模为多站多服务器系统,提出了云计算中心使用M/M/c/r排队系统服务并行作业的近似解析模型。我们解决了提出的分析模型,以获得给定云系统设置的响应时间、阻塞概率和其他重要性能指标的完整概率分布。因此,该模型可以指导云计算运营商确定适当的设置,例如服务器数量、缓冲区大小和并行度,以实现特定的性能水平。通过基于合成数据和真实工作负载跟踪的广泛模拟,我们表明,我们提出的分析模型可以为服务可并行作业的云计算中心提供近似的性能预测结果,即使这些作业到达遵循不同的分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Analysis of Cloud Computing Centers Serving Parallelizable Rendering Jobs Using M/M/c/r Queuing Systems
Performance analysis is crucial to the successful development of cloud computing paradigm. And it is especially important for a cloud computing center serving parallelizable application jobs, for determining a proper degree of parallelism could reduce the mean service response time and thus improve the performance of cloud computing obviously. In this paper, taking the cloud based rendering service platform as an example application, we propose an approximate analytical model for cloud computing centers serving parallelizable jobs using M/M/c/r queuing systems, by modeling the rendering service platform as a multi-station multi-server system. We solve the proposed analytical model to obtain a complete probability distribution of response time, blocking probability and other important performance metrics for given cloud system settings. Thus this model can guide cloud operators to determine a proper setting, such as the number of servers, the buffer size and the degree of parallelism, for achieving specific performance levels. Through extensive simulations based on both synthetic data and real-world workload traces, we show that our proposed analytical model can provide approximate performance prediction results for cloud computing centers serving parallelizable jobs, even those job arrivals follow different distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proximity Awareness Approach to Enhance Propagation Delay on the Bitcoin Peer-to-Peer Network ACTiCLOUD: Enabling the Next Generation of Cloud Applications The Internet of Things and Multiagent Systems: Decentralized Intelligence in Distributed Computing Decentralised Runtime Monitoring for Access Control Systems in Cloud Federations The Case for Using Content-Centric Networking for Distributing High-Energy Physics Software
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1