基于纹理的砂粒物理特性估计

A. Newell, Lewis D. Griffin, R. Morgan, P. A. Bull
{"title":"基于纹理的砂粒物理特性估计","authors":"A. Newell, Lewis D. Griffin, R. Morgan, P. A. Bull","doi":"10.1109/DICTA.2010.91","DOIUrl":null,"url":null,"abstract":"The common occurrence and transportability of quartz sand grains make them useful for forensic analysis, providing that grains can be accurately and consistently designated into prespecified types. Recent advances in the analysis of surface texture features found in scanning electron microscopy images of such grains have advanced this process. However, this requires expert knowledge that is not only time intensive, but also rare, meaning that automation is a highly attractive prospect if it were possible to achieve good levels of performance. Basic Image Feature Columns (BIF Columns), which use local symmetry type to produce a highly invariant yet distinctive encoding, have shown leading performance in standard texture recognition tasks used in computer vision. However, the system has not previously been tested on a real world problem. Here we demonstrate that the BIF Column system offers a simple yet effective solution to grain classification using surface texture. In a two class problem, where human level performance is expected to be perfect, the system classifies all but one grain from a sample of 88 correctly. In a harder task, where expert human performance is expected to be significantly less than perfect, our system achieves a correct classification rate of over 80%, with clear indications that performance can be improved if a larger dataset were available. Furthermore, very little tuning or adaptation has been necessary to achieve these results giving cause for optimism in the general applicability of this system to other texture classification problems in forensic analysis.","PeriodicalId":246460,"journal":{"name":"2010 International Conference on Digital Image Computing: Techniques and Applications","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Texture-Based Estimation of Physical Characteristics of Sand Grains\",\"authors\":\"A. Newell, Lewis D. Griffin, R. Morgan, P. A. Bull\",\"doi\":\"10.1109/DICTA.2010.91\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The common occurrence and transportability of quartz sand grains make them useful for forensic analysis, providing that grains can be accurately and consistently designated into prespecified types. Recent advances in the analysis of surface texture features found in scanning electron microscopy images of such grains have advanced this process. However, this requires expert knowledge that is not only time intensive, but also rare, meaning that automation is a highly attractive prospect if it were possible to achieve good levels of performance. Basic Image Feature Columns (BIF Columns), which use local symmetry type to produce a highly invariant yet distinctive encoding, have shown leading performance in standard texture recognition tasks used in computer vision. However, the system has not previously been tested on a real world problem. Here we demonstrate that the BIF Column system offers a simple yet effective solution to grain classification using surface texture. In a two class problem, where human level performance is expected to be perfect, the system classifies all but one grain from a sample of 88 correctly. In a harder task, where expert human performance is expected to be significantly less than perfect, our system achieves a correct classification rate of over 80%, with clear indications that performance can be improved if a larger dataset were available. Furthermore, very little tuning or adaptation has been necessary to achieve these results giving cause for optimism in the general applicability of this system to other texture classification problems in forensic analysis.\",\"PeriodicalId\":246460,\"journal\":{\"name\":\"2010 International Conference on Digital Image Computing: Techniques and Applications\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Digital Image Computing: Techniques and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2010.91\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2010.91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

石英砂颗粒的普遍存在和可运输性使其对法医分析很有用,提供了颗粒可以准确和一致地指定为预先指定的类型。在扫描电子显微镜图像中发现的表面纹理特征分析的最新进展推动了这一过程。然而,这需要专业知识,这不仅是时间密集型的,而且是罕见的,这意味着自动化是一个非常有吸引力的前景,如果它有可能实现良好的性能水平。基本图像特征列(Basic Image Feature Columns, BIF Columns)利用局部对称类型产生高度不变性且独特的编码,在计算机视觉中使用的标准纹理识别任务中显示出领先的性能。然而,该系统之前还没有在现实世界的问题上进行过测试。在这里,我们证明了BIF柱系统提供了一个简单而有效的解决方案,利用表面纹理进行颗粒分类。在一个两类问题中,人类水平的表现被期望是完美的,系统从88个样本中正确地分类了除了一个之外的所有谷物。在更困难的任务中,专家的表现被期望明显低于完美,我们的系统实现了超过80%的正确分类率,明确表明如果有更大的数据集可用,性能可以提高。此外,为了实现这些结果,很少需要调整或适应,这使得我们对该系统在法医分析中的其他纹理分类问题的普遍适用性感到乐观。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Texture-Based Estimation of Physical Characteristics of Sand Grains
The common occurrence and transportability of quartz sand grains make them useful for forensic analysis, providing that grains can be accurately and consistently designated into prespecified types. Recent advances in the analysis of surface texture features found in scanning electron microscopy images of such grains have advanced this process. However, this requires expert knowledge that is not only time intensive, but also rare, meaning that automation is a highly attractive prospect if it were possible to achieve good levels of performance. Basic Image Feature Columns (BIF Columns), which use local symmetry type to produce a highly invariant yet distinctive encoding, have shown leading performance in standard texture recognition tasks used in computer vision. However, the system has not previously been tested on a real world problem. Here we demonstrate that the BIF Column system offers a simple yet effective solution to grain classification using surface texture. In a two class problem, where human level performance is expected to be perfect, the system classifies all but one grain from a sample of 88 correctly. In a harder task, where expert human performance is expected to be significantly less than perfect, our system achieves a correct classification rate of over 80%, with clear indications that performance can be improved if a larger dataset were available. Furthermore, very little tuning or adaptation has been necessary to achieve these results giving cause for optimism in the general applicability of this system to other texture classification problems in forensic analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pulse Repetition Interval Modulation Recognition Using Symbolization Vessel Segmentation from Color Retinal Images with Varying Contrast and Central Reflex Properties A Novel Algorithm for Text Detection and Localization in Natural Scene Images Image Retrieval with a Visual Thesaurus Chromosome Classification Based on Wavelet Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1