具有障碍物检测和回避系统的最短路径自动投递机器人Alpha-N-V2

A. A. Neloy, R. A. Bindu, S. Alam, Ridwanul Haque, Md. Saif Khan, Nasim Mahmud Mishu, Shahnewaz Siddique
{"title":"具有障碍物检测和回避系统的最短路径自动投递机器人Alpha-N-V2","authors":"A. A. Neloy, R. A. Bindu, S. Alam, Ridwanul Haque, Md. Saif Khan, Nasim Mahmud Mishu, Shahnewaz Siddique","doi":"10.1142/s2196888820500219","DOIUrl":null,"url":null,"abstract":"An improved version of Alpha-N, a self-powered, wheel-driven Automated Delivery Robot (ADR), is presented in this study. Alpha-N-V2 is capable of navigating autonomously by detecting and avoiding objects or obstacles in its path. For autonomous navigation and path planning, Alpha-N uses a vector map and calculates the shortest path by Grid Count Method (GCM) of Dijkstra’s Algorithm. The RFID Reading System (RRS) is assembled in Alpha-N to read Landmark determination with Radio Frequency Identification (RFID) tags. With the help of the RFID tags, Alpha-N verifies the path for identification between source and destination and calibrates the current position. Along with the RRS, GCM, to detect and avoid obstacles, an Object Detection Module (ODM) is constructed by Faster R-CNN with VGGNet-16 architecture that builds and supports the Path Planning System (PPS). In the testing phase, the following results are acquired from the Alpha-N: ODM exhibits an accuracy of [Formula: see text], RRS shows [Formula: see text] accuracy and the PPS maintains the accuracy of [Formula: see text]. This proposed version of Alpha-N shows significant improvement in terms of performance and usability compared with the previous version of Alpha-N.","PeriodicalId":256649,"journal":{"name":"Vietnam. J. Comput. Sci.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Alpha-N-V2: Shortest Path Finder Automated Delivery Robot with Obstacle Detection and Avoiding System\",\"authors\":\"A. A. Neloy, R. A. Bindu, S. Alam, Ridwanul Haque, Md. Saif Khan, Nasim Mahmud Mishu, Shahnewaz Siddique\",\"doi\":\"10.1142/s2196888820500219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An improved version of Alpha-N, a self-powered, wheel-driven Automated Delivery Robot (ADR), is presented in this study. Alpha-N-V2 is capable of navigating autonomously by detecting and avoiding objects or obstacles in its path. For autonomous navigation and path planning, Alpha-N uses a vector map and calculates the shortest path by Grid Count Method (GCM) of Dijkstra’s Algorithm. The RFID Reading System (RRS) is assembled in Alpha-N to read Landmark determination with Radio Frequency Identification (RFID) tags. With the help of the RFID tags, Alpha-N verifies the path for identification between source and destination and calibrates the current position. Along with the RRS, GCM, to detect and avoid obstacles, an Object Detection Module (ODM) is constructed by Faster R-CNN with VGGNet-16 architecture that builds and supports the Path Planning System (PPS). In the testing phase, the following results are acquired from the Alpha-N: ODM exhibits an accuracy of [Formula: see text], RRS shows [Formula: see text] accuracy and the PPS maintains the accuracy of [Formula: see text]. This proposed version of Alpha-N shows significant improvement in terms of performance and usability compared with the previous version of Alpha-N.\",\"PeriodicalId\":256649,\"journal\":{\"name\":\"Vietnam. J. Comput. Sci.\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vietnam. J. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2196888820500219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam. J. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2196888820500219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

一种改进版的Alpha-N,一种自供电、轮驱动的自动递送机器人(ADR),在本研究中提出。Alpha-N-V2能够通过探测和避开路径上的物体或障碍物来自主导航。对于自主导航和路径规划,Alpha-N使用矢量地图,并通过Dijkstra算法的网格计数法(Grid Count Method, GCM)计算最短路径。RFID读取系统(RRS)在Alpha-N中组装,以读取具有射频识别(RFID)标签的地标确定。在RFID标签的帮助下,Alpha-N验证源和目的地之间的识别路径,并校准当前位置。与RRS、GCM一起,为了检测和避开障碍物,Faster R-CNN采用VGGNet-16架构构建了一个目标检测模块(ODM),该模块构建并支持路径规划系统(PPS)。在测试阶段,从Alpha-N中得到以下结果:ODM的精度为[公式:见文],RRS的精度为[公式:见文],PPS保持[公式:见文]的精度。与之前的Alpha-N版本相比,这个提议的Alpha-N版本在性能和可用性方面有了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Alpha-N-V2: Shortest Path Finder Automated Delivery Robot with Obstacle Detection and Avoiding System
An improved version of Alpha-N, a self-powered, wheel-driven Automated Delivery Robot (ADR), is presented in this study. Alpha-N-V2 is capable of navigating autonomously by detecting and avoiding objects or obstacles in its path. For autonomous navigation and path planning, Alpha-N uses a vector map and calculates the shortest path by Grid Count Method (GCM) of Dijkstra’s Algorithm. The RFID Reading System (RRS) is assembled in Alpha-N to read Landmark determination with Radio Frequency Identification (RFID) tags. With the help of the RFID tags, Alpha-N verifies the path for identification between source and destination and calibrates the current position. Along with the RRS, GCM, to detect and avoid obstacles, an Object Detection Module (ODM) is constructed by Faster R-CNN with VGGNet-16 architecture that builds and supports the Path Planning System (PPS). In the testing phase, the following results are acquired from the Alpha-N: ODM exhibits an accuracy of [Formula: see text], RRS shows [Formula: see text] accuracy and the PPS maintains the accuracy of [Formula: see text]. This proposed version of Alpha-N shows significant improvement in terms of performance and usability compared with the previous version of Alpha-N.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving Arabic Sentiment Analysis Using LSTM Based on Word Embedding Models Synthetic Data Generation for Morphological Analyses of Histopathology Images with Deep Learning Models Generating Popularity-Aware Reciprocal Recommendations Using Siamese Bi-Directional Gated Recurrent Units Network Hyperparameter Optimization of a Parallelized LSTM for Time Series Prediction Natural Language Processing and Sentiment Analysis on Bangla Social Media Comments on Russia-Ukraine War Using Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1