{"title":"实用网络物理安全的控制理论:扩展摘要","authors":"H. Sandberg","doi":"10.1145/3198458.3198467","DOIUrl":null,"url":null,"abstract":"In this talk, we discuss how control theory can contribute to the analysis and design of secure cyber-physical systems. We start by reviewing conditions for undetectable false-data injection attacks on feedback control systems. In particular, we highlight how a physical understanding of the controlled process can guide us in the allocation of protective measures. We show that protecting only a few carefully selected actuators or sensors can give indirect protection to many more components. We then illustrate how such analysis is exploited in the design of a resilient control scheme for a microgrid energy management system.","PeriodicalId":296635,"journal":{"name":"Proceedings of the 4th ACM Workshop on Cyber-Physical System Security","volume":"262 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Control Theory for Practical Cyber-Physical Security: Extended Abstract\",\"authors\":\"H. Sandberg\",\"doi\":\"10.1145/3198458.3198467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this talk, we discuss how control theory can contribute to the analysis and design of secure cyber-physical systems. We start by reviewing conditions for undetectable false-data injection attacks on feedback control systems. In particular, we highlight how a physical understanding of the controlled process can guide us in the allocation of protective measures. We show that protecting only a few carefully selected actuators or sensors can give indirect protection to many more components. We then illustrate how such analysis is exploited in the design of a resilient control scheme for a microgrid energy management system.\",\"PeriodicalId\":296635,\"journal\":{\"name\":\"Proceedings of the 4th ACM Workshop on Cyber-Physical System Security\",\"volume\":\"262 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th ACM Workshop on Cyber-Physical System Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3198458.3198467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th ACM Workshop on Cyber-Physical System Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3198458.3198467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Control Theory for Practical Cyber-Physical Security: Extended Abstract
In this talk, we discuss how control theory can contribute to the analysis and design of secure cyber-physical systems. We start by reviewing conditions for undetectable false-data injection attacks on feedback control systems. In particular, we highlight how a physical understanding of the controlled process can guide us in the allocation of protective measures. We show that protecting only a few carefully selected actuators or sensors can give indirect protection to many more components. We then illustrate how such analysis is exploited in the design of a resilient control scheme for a microgrid energy management system.