{"title":"编译器优化中的信息流保存","authors":"Frédéric Besson, Alexandre Dang, T. Jensen","doi":"10.1109/CSF.2019.00023","DOIUrl":null,"url":null,"abstract":"Correct compilers perform program transformations preserving input/output behaviours of programs. Yet, correctness does not prevent program optimisations from introducing information-flow leaks that would make the target program more vulnerable to side-channel attacks than the source program. To tackle this problem, we propose a notion of Information-Flow Preserving (IFP) program transformation which ensures that a target program is no more vulnerable to passive side-channel attacks than a source program. To protect against a wide range of attacks, we model an attacker who is granted arbitrary memory accesses for a pre-defined set of observation points. We propose a compositional proof principle for proving that a transformation is IFP. Using this principle, we show how a translation validation technique can be used to automatically verify and even close information-flow leaks introduced by standard compiler passes such as dead-store elimination and register allocation. The technique has been experimentally validated on the CompCert C compiler.","PeriodicalId":249093,"journal":{"name":"2019 IEEE 32nd Computer Security Foundations Symposium (CSF)","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Information-Flow Preservation in Compiler Optimisations\",\"authors\":\"Frédéric Besson, Alexandre Dang, T. Jensen\",\"doi\":\"10.1109/CSF.2019.00023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Correct compilers perform program transformations preserving input/output behaviours of programs. Yet, correctness does not prevent program optimisations from introducing information-flow leaks that would make the target program more vulnerable to side-channel attacks than the source program. To tackle this problem, we propose a notion of Information-Flow Preserving (IFP) program transformation which ensures that a target program is no more vulnerable to passive side-channel attacks than a source program. To protect against a wide range of attacks, we model an attacker who is granted arbitrary memory accesses for a pre-defined set of observation points. We propose a compositional proof principle for proving that a transformation is IFP. Using this principle, we show how a translation validation technique can be used to automatically verify and even close information-flow leaks introduced by standard compiler passes such as dead-store elimination and register allocation. The technique has been experimentally validated on the CompCert C compiler.\",\"PeriodicalId\":249093,\"journal\":{\"name\":\"2019 IEEE 32nd Computer Security Foundations Symposium (CSF)\",\"volume\":\"138 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 32nd Computer Security Foundations Symposium (CSF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSF.2019.00023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 32nd Computer Security Foundations Symposium (CSF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSF.2019.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Information-Flow Preservation in Compiler Optimisations
Correct compilers perform program transformations preserving input/output behaviours of programs. Yet, correctness does not prevent program optimisations from introducing information-flow leaks that would make the target program more vulnerable to side-channel attacks than the source program. To tackle this problem, we propose a notion of Information-Flow Preserving (IFP) program transformation which ensures that a target program is no more vulnerable to passive side-channel attacks than a source program. To protect against a wide range of attacks, we model an attacker who is granted arbitrary memory accesses for a pre-defined set of observation points. We propose a compositional proof principle for proving that a transformation is IFP. Using this principle, we show how a translation validation technique can be used to automatically verify and even close information-flow leaks introduced by standard compiler passes such as dead-store elimination and register allocation. The technique has been experimentally validated on the CompCert C compiler.