道路交通预测模型的凸组合

Carlos J. Gil Bellosta
{"title":"道路交通预测模型的凸组合","authors":"Carlos J. Gil Bellosta","doi":"10.1109/ICDMW.2010.23","DOIUrl":null,"url":null,"abstract":"This paper describes an approach to the road traffic prediction problem in Warsaw in the context of a data mining competition that is part of the IEEE ICDM 2010. A solution based on a convex combination of models mining different wells of information within the data is described. Such convex combination allows the final model compensate highly uncorrelated errors from the different underlying models and to achieve higher prediction accuracy.","PeriodicalId":170201,"journal":{"name":"2010 IEEE International Conference on Data Mining Workshops","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Convex Combination of Models for Predicting Road Traffic\",\"authors\":\"Carlos J. Gil Bellosta\",\"doi\":\"10.1109/ICDMW.2010.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an approach to the road traffic prediction problem in Warsaw in the context of a data mining competition that is part of the IEEE ICDM 2010. A solution based on a convex combination of models mining different wells of information within the data is described. Such convex combination allows the final model compensate highly uncorrelated errors from the different underlying models and to achieve higher prediction accuracy.\",\"PeriodicalId\":170201,\"journal\":{\"name\":\"2010 IEEE International Conference on Data Mining Workshops\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Data Mining Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2010.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2010.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文描述了在IEEE ICDM 2010的数据挖掘竞赛的背景下,华沙道路交通预测问题的一种方法。描述了一种基于凸组合模型的解决方案,该模型在数据中挖掘不同的信息井。这种凸组合允许最终模型补偿来自不同底层模型的高度不相关的误差,并获得更高的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Convex Combination of Models for Predicting Road Traffic
This paper describes an approach to the road traffic prediction problem in Warsaw in the context of a data mining competition that is part of the IEEE ICDM 2010. A solution based on a convex combination of models mining different wells of information within the data is described. Such convex combination allows the final model compensate highly uncorrelated errors from the different underlying models and to achieve higher prediction accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantum Path Integral Inspired Query Sequence Suggestion for User Search Task Simplification PTCR-Miner: Progressive Temporal Class Rule Mining for Multivariate Temporal Data Classification Bridging Folksonomies and Domain Ontologies: Getting Out Non-taxonomic Relations SIMPLE: Interactive Analytics on Patent Data Parallel EM-Clustering: Fast Convergence by Asynchronous Model Updates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1