基于DRBD的分布式计算系统可靠性建模

S. Distefano, M. Scarpa, A. Puliafito
{"title":"基于DRBD的分布式计算系统可靠性建模","authors":"S. Distefano, M. Scarpa, A. Puliafito","doi":"10.1109/SRDS.2006.32","DOIUrl":null,"url":null,"abstract":"Nowadays the great part of devices or systems we commonly use are often driven or managed by microchips and computers: cars, music players, phones, trains, planes, .... A consolidated trend of technology is to substitute mechanical with electronic parts, analogical with digital devices or controls, and so on. In this context, features like security, availability and reliability, usually summarized under the concept of dependability, are receiving higher attention. The dependability analysis, especially for what regards critical parts as computing systems or subsystems, is becoming more strategic: specific requirements and explicit or tighter constraints have to be satisfied. Even though this fact, there is a lack of suitable tools to properly model and analyze these aspects, with particular reference to reliability. To fill this gap, we propose the dynamic reliability block diagram (DRBD) modeling tool derived from the reliability block diagram (RBD) formalism. The DRBD permits to model the dynamic reliability behavior of a system through dependence models, exploited to represent dynamics behaviors as redundancy, load sharing, multiple, probabilistic and common failure mode. In this paper, the DRBD expressiveness and other capabilities, are illustrated through the analysis of a complex distributed computing system taken as example","PeriodicalId":164765,"journal":{"name":"2006 25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Modeling Distributed Computing System Reliability with DRBD\",\"authors\":\"S. Distefano, M. Scarpa, A. Puliafito\",\"doi\":\"10.1109/SRDS.2006.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays the great part of devices or systems we commonly use are often driven or managed by microchips and computers: cars, music players, phones, trains, planes, .... A consolidated trend of technology is to substitute mechanical with electronic parts, analogical with digital devices or controls, and so on. In this context, features like security, availability and reliability, usually summarized under the concept of dependability, are receiving higher attention. The dependability analysis, especially for what regards critical parts as computing systems or subsystems, is becoming more strategic: specific requirements and explicit or tighter constraints have to be satisfied. Even though this fact, there is a lack of suitable tools to properly model and analyze these aspects, with particular reference to reliability. To fill this gap, we propose the dynamic reliability block diagram (DRBD) modeling tool derived from the reliability block diagram (RBD) formalism. The DRBD permits to model the dynamic reliability behavior of a system through dependence models, exploited to represent dynamics behaviors as redundancy, load sharing, multiple, probabilistic and common failure mode. In this paper, the DRBD expressiveness and other capabilities, are illustrated through the analysis of a complex distributed computing system taken as example\",\"PeriodicalId\":164765,\"journal\":{\"name\":\"2006 25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SRDS.2006.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SRDS.2006.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

如今,我们常用的大部分设备或系统都是由微芯片和计算机驱动或管理的:汽车、音乐播放器、电话、火车、飞机、....一个巩固的技术趋势是用电子部件代替机械部件,用数字装置或控制装置代替类比装置,等等。在这种情况下,安全性、可用性和可靠性等通常概括为可靠性概念的特性受到了越来越多的关注。可靠性分析,特别是对于被视为计算系统或子系统的关键部分,正变得更具战略性:必须满足特定的需求和明确的或更严格的约束。尽管如此,仍然缺乏适当的工具来正确地建模和分析这些方面,特别是关于可靠性。为了填补这一空白,我们提出了基于可靠性框图(RBD)形式化的动态可靠性框图(DRBD)建模工具。DRBD允许通过依赖模型对系统的动态可靠性行为进行建模,利用依赖模型来表示冗余、负载共享、多重、概率和常见故障模式等动态行为。本文以一个复杂的分布式计算系统为例,说明了DRBD的表达能力和其他能力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling Distributed Computing System Reliability with DRBD
Nowadays the great part of devices or systems we commonly use are often driven or managed by microchips and computers: cars, music players, phones, trains, planes, .... A consolidated trend of technology is to substitute mechanical with electronic parts, analogical with digital devices or controls, and so on. In this context, features like security, availability and reliability, usually summarized under the concept of dependability, are receiving higher attention. The dependability analysis, especially for what regards critical parts as computing systems or subsystems, is becoming more strategic: specific requirements and explicit or tighter constraints have to be satisfied. Even though this fact, there is a lack of suitable tools to properly model and analyze these aspects, with particular reference to reliability. To fill this gap, we propose the dynamic reliability block diagram (DRBD) modeling tool derived from the reliability block diagram (RBD) formalism. The DRBD permits to model the dynamic reliability behavior of a system through dependence models, exploited to represent dynamics behaviors as redundancy, load sharing, multiple, probabilistic and common failure mode. In this paper, the DRBD expressiveness and other capabilities, are illustrated through the analysis of a complex distributed computing system taken as example
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance evaluation of a fair fault-tolerant mutual exclusion algorithm Fault-tolerant and scalable TCP splice and web server architecture Improvements and Reconsideration of Distributed Snapshot Protocols Improving DBMS Performance through Diverse Redundancy AVCast : New Approaches For Implementing Availability-Dependent Reliability for Multicast Receivers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1