鲁棒特征级多生物特征分类

A. Rattani, D. Kisku, M. Bicego, M. Tistarelli
{"title":"鲁棒特征级多生物特征分类","authors":"A. Rattani, D. Kisku, M. Bicego, M. Tistarelli","doi":"10.1109/BCC.2006.4341631","DOIUrl":null,"url":null,"abstract":"This paper proposes a robust feature level based fusion classifier for face and fingerprint biometrics. The proposed system fuses the two traits at feature extraction level by first making the feature sets compatible for concatenation and then reducing the feature sets to handle the 'problem of curse of dimensionality'; finally the concatenated feature vectors are matched. The system is tested on the database of 50 chimeric users with five samples per trait per person. The results are compared with the monomodal ones and with the fusion at matching score level using the most popular sum rule technique. The system reports an accuracy of 97.41% with a FAR and FRR of 1.98% and 3.18% respectively, outperforming single modalities and score-level fusion.","PeriodicalId":226152,"journal":{"name":"2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Robust Feature-Level Multibiometric Classification\",\"authors\":\"A. Rattani, D. Kisku, M. Bicego, M. Tistarelli\",\"doi\":\"10.1109/BCC.2006.4341631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a robust feature level based fusion classifier for face and fingerprint biometrics. The proposed system fuses the two traits at feature extraction level by first making the feature sets compatible for concatenation and then reducing the feature sets to handle the 'problem of curse of dimensionality'; finally the concatenated feature vectors are matched. The system is tested on the database of 50 chimeric users with five samples per trait per person. The results are compared with the monomodal ones and with the fusion at matching score level using the most popular sum rule technique. The system reports an accuracy of 97.41% with a FAR and FRR of 1.98% and 3.18% respectively, outperforming single modalities and score-level fusion.\",\"PeriodicalId\":226152,\"journal\":{\"name\":\"2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BCC.2006.4341631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCC.2006.4341631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

提出了一种鲁棒的基于特征层次的人脸和指纹生物识别融合分类器。该系统在特征提取层面将两种特征融合在一起,首先使特征集兼容于拼接,然后对特征集进行降维处理以解决“维数诅咒”问题;最后对拼接的特征向量进行匹配。该系统在50个嵌合用户的数据库上进行测试,每个人每个特征5个样本。用最流行的和规则技术将结果与单峰结果和匹配分数水平的融合结果进行了比较。该系统的准确率为97.41%,FAR和FRR分别为1.98%和3.18%,优于单一模式和评分水平融合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Feature-Level Multibiometric Classification
This paper proposes a robust feature level based fusion classifier for face and fingerprint biometrics. The proposed system fuses the two traits at feature extraction level by first making the feature sets compatible for concatenation and then reducing the feature sets to handle the 'problem of curse of dimensionality'; finally the concatenated feature vectors are matched. The system is tested on the database of 50 chimeric users with five samples per trait per person. The results are compared with the monomodal ones and with the fusion at matching score level using the most popular sum rule technique. The system reports an accuracy of 97.41% with a FAR and FRR of 1.98% and 3.18% respectively, outperforming single modalities and score-level fusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How Low Can You Go? Low Resolution Face Recognition Study Using Kernel Correlation Feature Analysis on the FRGCv2 dataset Using Biometric Verification to Estimate Identification Performance Segmenting Non-Ideal Irises Using Geodesic Active Contours Gait Recognition Through MPCA Plus LDA 3D Touchless Fingerprints: Compatibility with Legacy Rolled Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1