{"title":"最佳拉斯维加斯位置敏感数据结构","authors":"Thomas Dybdahl Ahle","doi":"10.1109/FOCS.2017.91","DOIUrl":null,"url":null,"abstract":"We show that approximate similarity (near neighbour) search can be solved in high dimensions with performance matching state of the art (data independent) Locality Sensitive Hashing, but with a guarantee of no false negatives. Specifically we give two data structures for common problems. For c-approximate near neighbour in Hamming space, for which we get query time dn^{1/c+o(1)} and space dn^{1+1/c+o(1)} matching that of [Indyk and Motwani, 1998] and answering a long standing open question from [Indyk, 2000a] and [Pagh, 2016] in the affirmative. For (s1, s2)-approximate Jaccard similarity we get query time d^2n^{ρ+o(1)} and space d^2n^{1+ρ+o(1), ρ= [log (1+s1)/(2s1)]/[log (1+s2)/(2s2)], when sets have equal size, matching the performance of [Pagh and Christiani, 2017].We use space partitions as in classic LSH, but construct these using a combination of brute force, tensoring and splitter functions à la [Naor et al., 1995]. We also show two dimensionality reduction lemmas with 1-sided error.","PeriodicalId":311592,"journal":{"name":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Optimal Las Vegas Locality Sensitive Data Structures\",\"authors\":\"Thomas Dybdahl Ahle\",\"doi\":\"10.1109/FOCS.2017.91\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that approximate similarity (near neighbour) search can be solved in high dimensions with performance matching state of the art (data independent) Locality Sensitive Hashing, but with a guarantee of no false negatives. Specifically we give two data structures for common problems. For c-approximate near neighbour in Hamming space, for which we get query time dn^{1/c+o(1)} and space dn^{1+1/c+o(1)} matching that of [Indyk and Motwani, 1998] and answering a long standing open question from [Indyk, 2000a] and [Pagh, 2016] in the affirmative. For (s1, s2)-approximate Jaccard similarity we get query time d^2n^{ρ+o(1)} and space d^2n^{1+ρ+o(1), ρ= [log (1+s1)/(2s1)]/[log (1+s2)/(2s2)], when sets have equal size, matching the performance of [Pagh and Christiani, 2017].We use space partitions as in classic LSH, but construct these using a combination of brute force, tensoring and splitter functions à la [Naor et al., 1995]. We also show two dimensionality reduction lemmas with 1-sided error.\",\"PeriodicalId\":311592,\"journal\":{\"name\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2017.91\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2017.91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
摘要
我们表明,近似相似性(近邻)搜索可以在高维中解决,性能匹配最新的(数据独立的)局部敏感哈希,但保证没有假阴性。具体来说,我们给出了两种常见问题的数据结构。对于Hamming空间中的c-近似近邻,我们得到了与[Indyk and Motwani, 1998]匹配的查询时间dn^{1/c+o(1)}和空间dn^{1+1/c+o(1)},肯定地回答了[Indyk, 2000a]和[Pagh, 2016]中一个长期存在的开放问题。对于(s1, s2)-近似Jaccard相似度,当集合大小相等时,我们得到查询时间d^2n^{ρ+o(1)}和空间d^2n^{1+ρ+o(1), ρ= [log (1+s1)/(2s1)]/[log (1+s2)/(2s2)],性能与[Pagh and Christiani, 2017]相匹配。我们像在经典的LSH中一样使用空间分区,但是使用蛮力、张紧和分割函数的组合来构建它们à[Naor et al., 1995]。我们还展示了具有单边误差的两个降维引理。
Optimal Las Vegas Locality Sensitive Data Structures
We show that approximate similarity (near neighbour) search can be solved in high dimensions with performance matching state of the art (data independent) Locality Sensitive Hashing, but with a guarantee of no false negatives. Specifically we give two data structures for common problems. For c-approximate near neighbour in Hamming space, for which we get query time dn^{1/c+o(1)} and space dn^{1+1/c+o(1)} matching that of [Indyk and Motwani, 1998] and answering a long standing open question from [Indyk, 2000a] and [Pagh, 2016] in the affirmative. For (s1, s2)-approximate Jaccard similarity we get query time d^2n^{ρ+o(1)} and space d^2n^{1+ρ+o(1), ρ= [log (1+s1)/(2s1)]/[log (1+s2)/(2s2)], when sets have equal size, matching the performance of [Pagh and Christiani, 2017].We use space partitions as in classic LSH, but construct these using a combination of brute force, tensoring and splitter functions à la [Naor et al., 1995]. We also show two dimensionality reduction lemmas with 1-sided error.