{"title":"脉冲噪声抑制递推最小m估计自适应滤波算法的收敛性分析","authors":"S. Chan, Yue-Xian Zou","doi":"10.1109/ICDSP.2002.1028178","DOIUrl":null,"url":null,"abstract":"We present the convergence analysis of the recursive least M-estimate (RLM) adaptive filter algorithm, which was recently proposed for robust adaptive filtering in the impulse noise environment. The mean and mean squares behaviors of the RLM algorithm, based on the modified Huber M-estimate function (MHF), in the contaminated Gaussian (CG) noise model are analyzed. Close-form expressions are derived. The simulation and theoretical results agree very well with each other and suggest that the RLM algorithm is more robust than the RLS algorithm under the CG noise model.","PeriodicalId":351073,"journal":{"name":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Convergence analysis of the recursive least M-estimate adaptive filtering algorithm for impulse noise suppression\",\"authors\":\"S. Chan, Yue-Xian Zou\",\"doi\":\"10.1109/ICDSP.2002.1028178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the convergence analysis of the recursive least M-estimate (RLM) adaptive filter algorithm, which was recently proposed for robust adaptive filtering in the impulse noise environment. The mean and mean squares behaviors of the RLM algorithm, based on the modified Huber M-estimate function (MHF), in the contaminated Gaussian (CG) noise model are analyzed. Close-form expressions are derived. The simulation and theoretical results agree very well with each other and suggest that the RLM algorithm is more robust than the RLS algorithm under the CG noise model.\",\"PeriodicalId\":351073,\"journal\":{\"name\":\"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2002.1028178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2002.1028178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Convergence analysis of the recursive least M-estimate adaptive filtering algorithm for impulse noise suppression
We present the convergence analysis of the recursive least M-estimate (RLM) adaptive filter algorithm, which was recently proposed for robust adaptive filtering in the impulse noise environment. The mean and mean squares behaviors of the RLM algorithm, based on the modified Huber M-estimate function (MHF), in the contaminated Gaussian (CG) noise model are analyzed. Close-form expressions are derived. The simulation and theoretical results agree very well with each other and suggest that the RLM algorithm is more robust than the RLS algorithm under the CG noise model.