使用索赔人特定声学通用结构的说话人身份验证的组合方法

Waquar Ahmad, S. Satyavolu, R. Hegde, H. Karnick
{"title":"使用索赔人特定声学通用结构的说话人身份验证的组合方法","authors":"Waquar Ahmad, S. Satyavolu, R. Hegde, H. Karnick","doi":"10.1109/RAICS.2013.6745455","DOIUrl":null,"url":null,"abstract":"In this paper, a novel approach to online cohort selection is proposed which combines the cohort sets obtained using acoustic universal structure (AUS) and speaker specific cohort selection (SSCS). To obtain the cohort set using AUS, a confusion matrix is first generated using the distance between the structure of test utterance and the AUS of speaker. The confusion matrix is normalized using the iterative proportional fitting (IPF) method. The normalized confusion matrix along with a simple distance metric is used to select a cohort set based on similarity for each client speaker. A similar procedure is followed to obtain the cohort set using the SSCS method. Both these cohort sets are combined to obtain a single cohort set. Normalization statistics are then computed from this cohort set, which is used in the final scoring for authenticating the claimed speaker identity. Speaker verification experiments conducted on the NIST 2002 SRE, NIST 2004 SRE and YORO database, show reasonable improvement over conventional techniques used in speaker verification in terms of equal error rate and decision cost function values.","PeriodicalId":184155,"journal":{"name":"2013 IEEE Recent Advances in Intelligent Computational Systems (RAICS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A combined approach to speaker authentication using claimant-specific acoustic universal structures\",\"authors\":\"Waquar Ahmad, S. Satyavolu, R. Hegde, H. Karnick\",\"doi\":\"10.1109/RAICS.2013.6745455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel approach to online cohort selection is proposed which combines the cohort sets obtained using acoustic universal structure (AUS) and speaker specific cohort selection (SSCS). To obtain the cohort set using AUS, a confusion matrix is first generated using the distance between the structure of test utterance and the AUS of speaker. The confusion matrix is normalized using the iterative proportional fitting (IPF) method. The normalized confusion matrix along with a simple distance metric is used to select a cohort set based on similarity for each client speaker. A similar procedure is followed to obtain the cohort set using the SSCS method. Both these cohort sets are combined to obtain a single cohort set. Normalization statistics are then computed from this cohort set, which is used in the final scoring for authenticating the claimed speaker identity. Speaker verification experiments conducted on the NIST 2002 SRE, NIST 2004 SRE and YORO database, show reasonable improvement over conventional techniques used in speaker verification in terms of equal error rate and decision cost function values.\",\"PeriodicalId\":184155,\"journal\":{\"name\":\"2013 IEEE Recent Advances in Intelligent Computational Systems (RAICS)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Recent Advances in Intelligent Computational Systems (RAICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAICS.2013.6745455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Recent Advances in Intelligent Computational Systems (RAICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAICS.2013.6745455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的在线队列选择方法,该方法将声学通用结构(AUS)和说话人特定队列选择(SSCS)相结合。为了获得队列集,首先利用测试话语结构与说话人的AUS之间的距离生成混淆矩阵。采用迭代比例拟合(IPF)方法对混淆矩阵进行归一化处理。规范化混淆矩阵和一个简单的距离度量被用来选择一个基于相似性的队列集合为每个客户说话者。遵循类似的程序,使用SSCS方法获得队列集。将这两个队列集合并为一个队列集。然后从该队列集计算规范化统计信息,该统计信息用于验证所声明的说话人身份的最终评分。在NIST 2002 SRE、NIST 2004 SRE和YORO数据库上进行的说话人验证实验表明,在等错误率和决策成本函数值方面,说话人验证比传统的说话人验证技术有了合理的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A combined approach to speaker authentication using claimant-specific acoustic universal structures
In this paper, a novel approach to online cohort selection is proposed which combines the cohort sets obtained using acoustic universal structure (AUS) and speaker specific cohort selection (SSCS). To obtain the cohort set using AUS, a confusion matrix is first generated using the distance between the structure of test utterance and the AUS of speaker. The confusion matrix is normalized using the iterative proportional fitting (IPF) method. The normalized confusion matrix along with a simple distance metric is used to select a cohort set based on similarity for each client speaker. A similar procedure is followed to obtain the cohort set using the SSCS method. Both these cohort sets are combined to obtain a single cohort set. Normalization statistics are then computed from this cohort set, which is used in the final scoring for authenticating the claimed speaker identity. Speaker verification experiments conducted on the NIST 2002 SRE, NIST 2004 SRE and YORO database, show reasonable improvement over conventional techniques used in speaker verification in terms of equal error rate and decision cost function values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic gesture recognition of Indian sign language considering local motion of hand using spatial location of Key Maximum Curvature Points OFDM radio based range and direction sensor for robotics applications A new built in self test pattern generator for low power dissipation and high fault coverage Reconfigurable ultrasonic beamformer Clustering of web sessions by FOGSAA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1