{"title":"纳米cmos电路泄漏功率的快速准确估计","authors":"M. Bryk, L. Józwiak, W. Kuzmicz","doi":"10.1109/DSD.2011.92","DOIUrl":null,"url":null,"abstract":"This paper addresses the crucial problem of static power reduction for circuits implemented in nano-CMOS technologies. Its solution requires accurate and rapid power estimation, but the known power simulators are not accurate and quick at the same time. The paper proposes and discusses a new rapid and very accurate leakage power estimation method and related simulator. The maximum estimation error of the simulator is within 5%, with an average error of only 0.57%, and run-times in the range of seconds, while for the same circuits HSPICE runs for hours or days.","PeriodicalId":267187,"journal":{"name":"2011 14th Euromicro Conference on Digital System Design","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Rapid and Accurate Leakage Power Estimation for Nano-CMOS Circuits\",\"authors\":\"M. Bryk, L. Józwiak, W. Kuzmicz\",\"doi\":\"10.1109/DSD.2011.92\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the crucial problem of static power reduction for circuits implemented in nano-CMOS technologies. Its solution requires accurate and rapid power estimation, but the known power simulators are not accurate and quick at the same time. The paper proposes and discusses a new rapid and very accurate leakage power estimation method and related simulator. The maximum estimation error of the simulator is within 5%, with an average error of only 0.57%, and run-times in the range of seconds, while for the same circuits HSPICE runs for hours or days.\",\"PeriodicalId\":267187,\"journal\":{\"name\":\"2011 14th Euromicro Conference on Digital System Design\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 14th Euromicro Conference on Digital System Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSD.2011.92\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 14th Euromicro Conference on Digital System Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSD.2011.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rapid and Accurate Leakage Power Estimation for Nano-CMOS Circuits
This paper addresses the crucial problem of static power reduction for circuits implemented in nano-CMOS technologies. Its solution requires accurate and rapid power estimation, but the known power simulators are not accurate and quick at the same time. The paper proposes and discusses a new rapid and very accurate leakage power estimation method and related simulator. The maximum estimation error of the simulator is within 5%, with an average error of only 0.57%, and run-times in the range of seconds, while for the same circuits HSPICE runs for hours or days.