Bug严重性分类中数据不平衡的代价敏感策略:实验结果

Nivir Kanti Singha Roy, B. Rossi
{"title":"Bug严重性分类中数据不平衡的代价敏感策略:实验结果","authors":"Nivir Kanti Singha Roy, B. Rossi","doi":"10.1109/SEAA.2017.71","DOIUrl":null,"url":null,"abstract":"Context: Software Bug Severity Classification can help to improve the software bug triaging process. However, severity levels present a high-level of data imbalance that needs to be taken into account. Aim: We investigate cost-sensitive strategies in multi-class bug severity classification to counteract data imbalance. Method: We transform datasets from three severity classification papers to a common format, totaling 17 projects. We test different cost sensitive strategies to penalize majority classes. We adopt a Support Vector Machine (SVM) classifier that we also compare to a baseline \"majority class\" classifier. Results: A model weighting classes based on the inverse of instance frequencies yields a statistically significant improvement (low effect size) over the standard unweighted SVM model in the assembled dataset. Conclusions: Data imbalance should be taken more into consideration in future severity classification research papers.","PeriodicalId":151513,"journal":{"name":"2017 43rd Euromicro Conference on Software Engineering and Advanced Applications (SEAA)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Cost-Sensitive Strategies for Data Imbalance in Bug Severity Classification: Experimental Results\",\"authors\":\"Nivir Kanti Singha Roy, B. Rossi\",\"doi\":\"10.1109/SEAA.2017.71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Context: Software Bug Severity Classification can help to improve the software bug triaging process. However, severity levels present a high-level of data imbalance that needs to be taken into account. Aim: We investigate cost-sensitive strategies in multi-class bug severity classification to counteract data imbalance. Method: We transform datasets from three severity classification papers to a common format, totaling 17 projects. We test different cost sensitive strategies to penalize majority classes. We adopt a Support Vector Machine (SVM) classifier that we also compare to a baseline \\\"majority class\\\" classifier. Results: A model weighting classes based on the inverse of instance frequencies yields a statistically significant improvement (low effect size) over the standard unweighted SVM model in the assembled dataset. Conclusions: Data imbalance should be taken more into consideration in future severity classification research papers.\",\"PeriodicalId\":151513,\"journal\":{\"name\":\"2017 43rd Euromicro Conference on Software Engineering and Advanced Applications (SEAA)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 43rd Euromicro Conference on Software Engineering and Advanced Applications (SEAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEAA.2017.71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 43rd Euromicro Conference on Software Engineering and Advanced Applications (SEAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEAA.2017.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

背景:软件缺陷严重性分类可以帮助改进软件缺陷分类过程。但是,严重性级别表示需要考虑的数据高度不平衡。目的:研究多类漏洞严重程度分类中成本敏感策略对数据不平衡的影响。方法:我们将三篇严重性分类论文的数据集转换为通用格式,共计17个项目。我们测试了不同的成本敏感策略来惩罚大多数类别。我们采用支持向量机(SVM)分类器,我们也将其与基线“多数类”分类器进行比较。结果:与组装数据集中的标准未加权SVM模型相比,基于实例频率逆的模型加权类在统计上有显著的改进(低效应大小)。结论:在未来的严重性分类研究论文中,应更多地考虑数据不平衡问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cost-Sensitive Strategies for Data Imbalance in Bug Severity Classification: Experimental Results
Context: Software Bug Severity Classification can help to improve the software bug triaging process. However, severity levels present a high-level of data imbalance that needs to be taken into account. Aim: We investigate cost-sensitive strategies in multi-class bug severity classification to counteract data imbalance. Method: We transform datasets from three severity classification papers to a common format, totaling 17 projects. We test different cost sensitive strategies to penalize majority classes. We adopt a Support Vector Machine (SVM) classifier that we also compare to a baseline "majority class" classifier. Results: A model weighting classes based on the inverse of instance frequencies yields a statistically significant improvement (low effect size) over the standard unweighted SVM model in the assembled dataset. Conclusions: Data imbalance should be taken more into consideration in future severity classification research papers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Patterns for Designing and Implementing an Environment for Software Start-Up Education Assessment of Agility in Software Organizations with a Web-Based Agility Assessment Tool Continuous practices and devops: beyond the buzz, what does it all mean? Guiding Quality Assurance for Mobile Applications with FIT4Apps — A Two-Step Evaluation A Literature Study on Privacy Patterns Research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1