恢复多个配错的图像

C. Srinivas, M. Srinath
{"title":"恢复多个配错的图像","authors":"C. Srinivas, M. Srinath","doi":"10.1109/MDSP.1989.97121","DOIUrl":null,"url":null,"abstract":"Summary form only given. A stochastic modeling approach to the restoration of misregistered corrupted images of the same scene has been adopted. If a wide-sense stationarity assumption is made on the 2-D continuous version of the image of the scene, it can be seen that individual discrete image samples from this continuous image exhibit similar statistical properties in the spatial domain, i.e. the (auto) covariance matrix defined on each discrete image is identical. The temporal correlation between a pair of discrete images is dictated by the temporal displacement between images and the stochastic model in the continuous domain. This temporal correlation can be expressed in terms of the misregistration of a pair of discrete images and the correlation matrix of the discrete image. Hence, the stochastic model-based approach defines a parametric form of the spatio-temporal correlation matrix, in terms of the spatial model parameters over a single image lattice and the displacement values between different frames.<<ETX>>","PeriodicalId":340681,"journal":{"name":"Sixth Multidimensional Signal Processing Workshop,","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Restoration of multiple misregistered images\",\"authors\":\"C. Srinivas, M. Srinath\",\"doi\":\"10.1109/MDSP.1989.97121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. A stochastic modeling approach to the restoration of misregistered corrupted images of the same scene has been adopted. If a wide-sense stationarity assumption is made on the 2-D continuous version of the image of the scene, it can be seen that individual discrete image samples from this continuous image exhibit similar statistical properties in the spatial domain, i.e. the (auto) covariance matrix defined on each discrete image is identical. The temporal correlation between a pair of discrete images is dictated by the temporal displacement between images and the stochastic model in the continuous domain. This temporal correlation can be expressed in terms of the misregistration of a pair of discrete images and the correlation matrix of the discrete image. Hence, the stochastic model-based approach defines a parametric form of the spatio-temporal correlation matrix, in terms of the spatial model parameters over a single image lattice and the displacement values between different frames.<<ETX>>\",\"PeriodicalId\":340681,\"journal\":{\"name\":\"Sixth Multidimensional Signal Processing Workshop,\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth Multidimensional Signal Processing Workshop,\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MDSP.1989.97121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth Multidimensional Signal Processing Workshop,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDSP.1989.97121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

只提供摘要形式。采用随机建模方法对同一场景的误配损坏图像进行恢复。如果对场景图像的二维连续版本进行广义平稳性假设,可以看出,该连续图像中的各个离散图像样本在空间域中具有相似的统计特性,即每个离散图像上定义的(自)协方差矩阵相同。一对离散图像之间的时间相关性取决于图像之间的时间位移和连续域中的随机模型。这种时间相关性可以用一对离散图像的错配和离散图像的相关矩阵来表示。因此,基于随机模型的方法根据单个图像晶格上的空间模型参数和不同帧之间的位移值定义了时空相关矩阵的参数形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Restoration of multiple misregistered images
Summary form only given. A stochastic modeling approach to the restoration of misregistered corrupted images of the same scene has been adopted. If a wide-sense stationarity assumption is made on the 2-D continuous version of the image of the scene, it can be seen that individual discrete image samples from this continuous image exhibit similar statistical properties in the spatial domain, i.e. the (auto) covariance matrix defined on each discrete image is identical. The temporal correlation between a pair of discrete images is dictated by the temporal displacement between images and the stochastic model in the continuous domain. This temporal correlation can be expressed in terms of the misregistration of a pair of discrete images and the correlation matrix of the discrete image. Hence, the stochastic model-based approach defines a parametric form of the spatio-temporal correlation matrix, in terms of the spatial model parameters over a single image lattice and the displacement values between different frames.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A filtering approach to the two-dimensional volume conductor forward and inverse problems A cross-correlation approach to astronomical speckle imaging A new robust method for 2-D sinusoidal frequency estimation Fast progressive reconstruction of a transformed image by the Hartley method Adaptive filter for processing of multichannel nonstationary seismic data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1