各种机器学习分类器在医疗数据上的比较研究

Nilima Karankar, Pragya Shukla, Niyati Agrawal
{"title":"各种机器学习分类器在医疗数据上的比较研究","authors":"Nilima Karankar, Pragya Shukla, Niyati Agrawal","doi":"10.1109/CSNT.2017.8418550","DOIUrl":null,"url":null,"abstract":"Data classification is an important task to label the class of data. Attributes or feature is a portion of information which is applicable to the task of computation. Our task is to predict and prevent cardiac arrest which is one of the biggest challenges of cardiology using a machine learning classifier. Since a particular classifier may or may not work well for such datasets so it is important to do a comparative study of classifiers in order to achieve maximum performance in such critical predictions of cardiac arrest. The UCI dataset is chosen for the purpose of comparison, and a comparative study of various classifiers is provided on the same dataset. Results are given as accuracy of different classifiers. The various classifier methods include the KNN classifier, Nave Bayes classifier, Support Vector Machine, Neural Network, Gaussian Mixture Model and Decision Tree classifier.","PeriodicalId":382417,"journal":{"name":"2017 7th International Conference on Communication Systems and Network Technologies (CSNT)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Comparative study of various machine learning classifiers on medical data\",\"authors\":\"Nilima Karankar, Pragya Shukla, Niyati Agrawal\",\"doi\":\"10.1109/CSNT.2017.8418550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data classification is an important task to label the class of data. Attributes or feature is a portion of information which is applicable to the task of computation. Our task is to predict and prevent cardiac arrest which is one of the biggest challenges of cardiology using a machine learning classifier. Since a particular classifier may or may not work well for such datasets so it is important to do a comparative study of classifiers in order to achieve maximum performance in such critical predictions of cardiac arrest. The UCI dataset is chosen for the purpose of comparison, and a comparative study of various classifiers is provided on the same dataset. Results are given as accuracy of different classifiers. The various classifier methods include the KNN classifier, Nave Bayes classifier, Support Vector Machine, Neural Network, Gaussian Mixture Model and Decision Tree classifier.\",\"PeriodicalId\":382417,\"journal\":{\"name\":\"2017 7th International Conference on Communication Systems and Network Technologies (CSNT)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 7th International Conference on Communication Systems and Network Technologies (CSNT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSNT.2017.8418550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th International Conference on Communication Systems and Network Technologies (CSNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSNT.2017.8418550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

数据分类是对数据进行分类的一项重要工作。属性或特征是适用于计算任务的信息的一部分。我们的任务是使用机器学习分类器预测和预防心脏骤停,这是心脏病学最大的挑战之一。由于特定的分类器可能会也可能不会对这些数据集很好地工作,因此为了在心脏骤停的关键预测中实现最大的性能,对分类器进行比较研究是很重要的。选择UCI数据集进行比较,并在同一数据集上提供各种分类器的比较研究。结果给出了不同分类器的准确率。各种分类器方法包括KNN分类器、朴素贝叶斯分类器、支持向量机、神经网络、高斯混合模型和决策树分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative study of various machine learning classifiers on medical data
Data classification is an important task to label the class of data. Attributes or feature is a portion of information which is applicable to the task of computation. Our task is to predict and prevent cardiac arrest which is one of the biggest challenges of cardiology using a machine learning classifier. Since a particular classifier may or may not work well for such datasets so it is important to do a comparative study of classifiers in order to achieve maximum performance in such critical predictions of cardiac arrest. The UCI dataset is chosen for the purpose of comparison, and a comparative study of various classifiers is provided on the same dataset. Results are given as accuracy of different classifiers. The various classifier methods include the KNN classifier, Nave Bayes classifier, Support Vector Machine, Neural Network, Gaussian Mixture Model and Decision Tree classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart input: Provide mouse and keyboard input to a PC from android devices A hybrid approach for human skin detection Correlating multiple events and data in an ethernet network Data visualization through R and Azure for scaling machine training sets Robust machine learning of the complex-valued neurons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1