大豆决策管理系统的应用统计模型与遥感

M. Taheri, Dheeman Saha, Gary Hatfield, E. Byamukama, Sung Y. Shin
{"title":"大豆决策管理系统的应用统计模型与遥感","authors":"M. Taheri, Dheeman Saha, Gary Hatfield, E. Byamukama, Sung Y. Shin","doi":"10.1145/3129676.3129710","DOIUrl":null,"url":null,"abstract":"This paper proposes a Decision Management System to identify the white mold regions from the soybean fields using Autologistic Statistical Model (ASM) and Remote Sensing (RS) data analysis with commercially available Big Data sets as input data. In order to develop an identification model, numerous types of data need to be considered. In this study, the data that was used is satellite image pixel values, and data gathered from the field such as precipitation, yield, elevation, humidity, wind speed, wind direction and geospatial locations. The model evaluated the outcome using this information as input parameters and provided an overall estimation of the white mold region in the soybean fields. Based on the evaluation of the result, the accuracy rate of the proposed methods 84% which is a promising result due to the fact that each pixel of the satellite image is 30 by 30 meters.","PeriodicalId":326100,"journal":{"name":"Proceedings of the International Conference on Research in Adaptive and Convergent Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applied Statistical Model and Remote Sensing for Decision Management System for Soybean\",\"authors\":\"M. Taheri, Dheeman Saha, Gary Hatfield, E. Byamukama, Sung Y. Shin\",\"doi\":\"10.1145/3129676.3129710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a Decision Management System to identify the white mold regions from the soybean fields using Autologistic Statistical Model (ASM) and Remote Sensing (RS) data analysis with commercially available Big Data sets as input data. In order to develop an identification model, numerous types of data need to be considered. In this study, the data that was used is satellite image pixel values, and data gathered from the field such as precipitation, yield, elevation, humidity, wind speed, wind direction and geospatial locations. The model evaluated the outcome using this information as input parameters and provided an overall estimation of the white mold region in the soybean fields. Based on the evaluation of the result, the accuracy rate of the proposed methods 84% which is a promising result due to the fact that each pixel of the satellite image is 30 by 30 meters.\",\"PeriodicalId\":326100,\"journal\":{\"name\":\"Proceedings of the International Conference on Research in Adaptive and Convergent Systems\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Research in Adaptive and Convergent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3129676.3129710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Research in Adaptive and Convergent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3129676.3129710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于自统计模型(ASM)和遥感(RS)数据分析的大豆白霉区识别决策管理系统,该系统以商业大数据集为输入数据。为了开发识别模型,需要考虑许多类型的数据。本研究使用的数据为卫星图像像素值,以及从野外采集的降水、产量、高程、湿度、风速、风向、地理空间位置等数据。该模型利用这些信息作为输入参数,对结果进行了评估,并提供了大豆田中白霉菌区域的总体估计。通过对结果的评估,所提方法的准确率达到了84%,由于卫星图像的每个像素是30 × 30米,这是一个很有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Applied Statistical Model and Remote Sensing for Decision Management System for Soybean
This paper proposes a Decision Management System to identify the white mold regions from the soybean fields using Autologistic Statistical Model (ASM) and Remote Sensing (RS) data analysis with commercially available Big Data sets as input data. In order to develop an identification model, numerous types of data need to be considered. In this study, the data that was used is satellite image pixel values, and data gathered from the field such as precipitation, yield, elevation, humidity, wind speed, wind direction and geospatial locations. The model evaluated the outcome using this information as input parameters and provided an overall estimation of the white mold region in the soybean fields. Based on the evaluation of the result, the accuracy rate of the proposed methods 84% which is a promising result due to the fact that each pixel of the satellite image is 30 by 30 meters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Extrinsic Depth Camera Calibration Method for Narrow Field of View Color Camera Motion Mode Recognition for Traffic Safety in Campus Guiding Application Failure Prediction by Utilizing Log Analysis: A Systematic Mapping Study PerfNet Road Surface Profiling based on Artificial-Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1