{"title":"Application of compressive sensing in sparse spatial channel recovery for beamforming in mmWave outdoor systems","authors":"Djamal E. Berraki, S. Armour, A. Nix","doi":"10.1109/WCNC.2014.6952205","DOIUrl":null,"url":null,"abstract":"In this paper the use of compressive sensing (CS) to accurately estimate the sparse Power Angle Profile (PAP) of a mmWave propagation channel has been investigated. This scheme is especially attractive for outdoor mmWave applications where large antenna arrays are more likely to be deployed to compensate for high pathloss. Current analogue beamforming techniques such as the codebook based 802.11ad beamforming manifest large beamforming overhead for large antenna arrays of typically 16×16 elements. Measurements in an anechoic chamber were performed to demonstrate the applicability of CS to mmWave PAP estimation. The impact of noise on the estimation of Directions-of-Departure (DoD) using CS theory is analysed and finally the benefit of exploiting the reconstructed PAP in beamforming is assessed and compared to the beam searching algorithm adopted in the IEEE 802.11ad standard.","PeriodicalId":220393,"journal":{"name":"2014 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Wireless Communications and Networking Conference (WCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNC.2014.6952205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

摘要

本文研究了利用压缩感知(CS)精确估计毫米波传播信道稀疏功率角分布(PAP)的方法。这种方案对室外毫米波应用特别有吸引力,在这种应用中,更有可能部署大型天线阵列来补偿高路径损耗。目前的模拟波束形成技术,如基于码本的802.11ad波束形成技术,对于典型的16×16元素的大型天线阵列显示出较大的波束形成开销。在消声室中进行了测量,以证明CS对毫米波PAP估计的适用性。分析了噪声对使用CS理论估计偏离方向(DoD)的影响,最后评估了利用重构PAP进行波束形成的效益,并与IEEE 802.11ad标准中采用的波束搜索算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of compressive sensing in sparse spatial channel recovery for beamforming in mmWave outdoor systems
In this paper the use of compressive sensing (CS) to accurately estimate the sparse Power Angle Profile (PAP) of a mmWave propagation channel has been investigated. This scheme is especially attractive for outdoor mmWave applications where large antenna arrays are more likely to be deployed to compensate for high pathloss. Current analogue beamforming techniques such as the codebook based 802.11ad beamforming manifest large beamforming overhead for large antenna arrays of typically 16×16 elements. Measurements in an anechoic chamber were performed to demonstrate the applicability of CS to mmWave PAP estimation. The impact of noise on the estimation of Directions-of-Departure (DoD) using CS theory is analysed and finally the benefit of exploiting the reconstructed PAP in beamforming is assessed and compared to the beam searching algorithm adopted in the IEEE 802.11ad standard.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance analysis of general order selection in decentralized cognitive radio networks Performance of maximum-largest weighted delay first algorithm in long term evolution-advanced with carrier aggregation Distributed space-time codes for amplify-and-forward relaying networks Novel modulation detection scheme for underwater acoustic communication signal through short-time detailed cyclostationary features Relay selection and power allocation with minimum rate guarantees for cognitive radio systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1