用于短外显子识别的DNA特征自回归建模

N. Song, Hong Yan
{"title":"用于短外显子识别的DNA特征自回归建模","authors":"N. Song, Hong Yan","doi":"10.1109/BIBM.2010.5706608","DOIUrl":null,"url":null,"abstract":"This paper presents a new technique for the detection of short exons in DNA sequences. In this method, we analyze the DNA propeller twist and bending stiffness using the autoregressive (AR) model. The linear prediction matrices for the two features are combined to find the same set of linear prediction coefficients, from which we estimate the spectrum of the DNA sequence and detect protein-coding regions based on the 1/3 frequency component. To overcome the non-stationarity of DNA sequences, we use moving windows of different sizes in the AR model. Experiments on the human genome show that our multi-feature based method is superior in performance to existing exon detection algorithms.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Autoregressive modeling of DNA features for short exon recognition\",\"authors\":\"N. Song, Hong Yan\",\"doi\":\"10.1109/BIBM.2010.5706608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new technique for the detection of short exons in DNA sequences. In this method, we analyze the DNA propeller twist and bending stiffness using the autoregressive (AR) model. The linear prediction matrices for the two features are combined to find the same set of linear prediction coefficients, from which we estimate the spectrum of the DNA sequence and detect protein-coding regions based on the 1/3 frequency component. To overcome the non-stationarity of DNA sequences, we use moving windows of different sizes in the AR model. Experiments on the human genome show that our multi-feature based method is superior in performance to existing exon detection algorithms.\",\"PeriodicalId\":275098,\"journal\":{\"name\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2010.5706608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种检测DNA序列短外显子的新技术。在此方法中,我们使用自回归(AR)模型分析DNA螺旋桨的扭转和弯曲刚度。将这两个特征的线性预测矩阵进行组合,得到一组相同的线性预测系数,以此估计DNA序列的频谱,并根据1/3频率分量检测蛋白质编码区。为了克服DNA序列的非平稳性,我们在AR模型中使用了不同大小的移动窗口。在人类基因组上的实验表明,基于多特征的方法在性能上优于现有的外显子检测算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Autoregressive modeling of DNA features for short exon recognition
This paper presents a new technique for the detection of short exons in DNA sequences. In this method, we analyze the DNA propeller twist and bending stiffness using the autoregressive (AR) model. The linear prediction matrices for the two features are combined to find the same set of linear prediction coefficients, from which we estimate the spectrum of the DNA sequence and detect protein-coding regions based on the 1/3 frequency component. To overcome the non-stationarity of DNA sequences, we use moving windows of different sizes in the AR model. Experiments on the human genome show that our multi-feature based method is superior in performance to existing exon detection algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A gene ranking method using text-mining for the identification of disease related genes alns — A searchable and filterable sequence alignment format A fast and noise-adaptive rough-fuzzy hybrid algorithm for medical image segmentation An accurate, automatic method for markerless alignment of electron tomographic images Unsupervised integration of multiple protein disorder predictors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1