定向纹理转移

Hochang Lee, Sanghyun Seo, Seung-Tack Ryoo, K. Yoon
{"title":"定向纹理转移","authors":"Hochang Lee, Sanghyun Seo, Seung-Tack Ryoo, K. Yoon","doi":"10.1145/1809939.1809945","DOIUrl":null,"url":null,"abstract":"A texture transfer algorithm modifies the target image replacing the high frequency information with the example source image. Previous texture transfer techniques normally use such factors as color distance and standard deviation for selecting the best texture from the candidate sets. These factors are useful for expressing a texture effect of the example source in the target image, but are less than optimal for considering the object shape of the target image.\n In this paper, we propose a novel texture transfer algorithm to express the directional effect based on the flow of the target image. For this, we use a directional factor that considers the gradient direction of the target image. We add an additional energy term that respects the image gradient to the previous fast texture transfer algorithm. Additionally, we propose a method for estimating the directional factor weight value from the target image. We have tested our algorithm with various target images. Our algorithm can express a result image with the feature of the example source texture and the flow of the target image.","PeriodicalId":204343,"journal":{"name":"International Symposium on Non-Photorealistic Animation and Rendering","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"88","resultStr":"{\"title\":\"Directional texture transfer\",\"authors\":\"Hochang Lee, Sanghyun Seo, Seung-Tack Ryoo, K. Yoon\",\"doi\":\"10.1145/1809939.1809945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A texture transfer algorithm modifies the target image replacing the high frequency information with the example source image. Previous texture transfer techniques normally use such factors as color distance and standard deviation for selecting the best texture from the candidate sets. These factors are useful for expressing a texture effect of the example source in the target image, but are less than optimal for considering the object shape of the target image.\\n In this paper, we propose a novel texture transfer algorithm to express the directional effect based on the flow of the target image. For this, we use a directional factor that considers the gradient direction of the target image. We add an additional energy term that respects the image gradient to the previous fast texture transfer algorithm. Additionally, we propose a method for estimating the directional factor weight value from the target image. We have tested our algorithm with various target images. Our algorithm can express a result image with the feature of the example source texture and the flow of the target image.\",\"PeriodicalId\":204343,\"journal\":{\"name\":\"International Symposium on Non-Photorealistic Animation and Rendering\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"88\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Non-Photorealistic Animation and Rendering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1809939.1809945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Non-Photorealistic Animation and Rendering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1809939.1809945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 88

摘要

一种纹理传输算法对目标图像进行修改,用示例源图像替换高频信息。以前的纹理转移技术通常使用颜色距离和标准偏差等因素从候选集中选择最佳纹理。这些因素对于表达目标图像中示例源的纹理效果是有用的,但是对于考虑目标图像的物体形状来说不是最优的。在本文中,我们提出了一种新的纹理传输算法来表达基于目标图像流动的方向效应。为此,我们使用考虑目标图像梯度方向的方向因子。我们在之前的快速纹理传输算法中增加了一个额外的能量项,该能量项尊重图像梯度。此外,我们还提出了一种从目标图像中估计方向因子权重值的方法。我们用不同的目标图像测试了我们的算法。我们的算法可以表达具有示例源纹理和目标图像流特征的结果图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Directional texture transfer
A texture transfer algorithm modifies the target image replacing the high frequency information with the example source image. Previous texture transfer techniques normally use such factors as color distance and standard deviation for selecting the best texture from the candidate sets. These factors are useful for expressing a texture effect of the example source in the target image, but are less than optimal for considering the object shape of the target image. In this paper, we propose a novel texture transfer algorithm to express the directional effect based on the flow of the target image. For this, we use a directional factor that considers the gradient direction of the target image. We add an additional energy term that respects the image gradient to the previous fast texture transfer algorithm. Additionally, we propose a method for estimating the directional factor weight value from the target image. We have tested our algorithm with various target images. Our algorithm can express a result image with the feature of the example source texture and the flow of the target image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantifying visual abstraction quality for stipple drawings Real-time panorama maps Depth-aware neural style transfer Pigment-based recoloring of watercolor paintings A generic framework for the structured abstraction of images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1