Wesley R Walker, R. Marloth, Ye Thura Hein, O. Es-Said
{"title":"不完全固溶处理对2195铝锂合金拉伸性能和力学各向异性的影响","authors":"Wesley R Walker, R. Marloth, Ye Thura Hein, O. Es-Said","doi":"10.4028/www.scientific.net/DF.22.109","DOIUrl":null,"url":null,"abstract":"This study aimed to characterize the effects of incomplete solution treatment time on the tensile behavior of 2195 Al-Li alloy. Two sets of plates of 2195 Al-Li alloy received solution heat treatment. One set received the prescribed treatment, held in the furnace for 30 minutes after the material had reached 507°C. The other set was in the furnace for only 30 minutes and did not reach 507°C until after about 15 to 20 minutes. Both set of plates were water quenched. Samples from the plates were then stretched 2.5-3% or 6%, rolled 6%, and rolled 24%, at 0°, 45°, and 90° relative to the rolling direction of the as-received material. The samples were aged at 143°C for 36 hours and air-cooled. Tensile specimens were milled out at 0°, 45°, and 90° relative to the original rolling direction. Tensile testing was performed on all samples. The incomplete heat treatment (incomplete solution treatment) resulted in a significant reduction in strength. This was probably due to the formation of fewer T1 precipitates after aging, thereby reducing the amount which could nucleate during cold work. The fully heat treated samples had higher percent yield strength, ultimate strength, and elongation.","PeriodicalId":311581,"journal":{"name":"Diffusion Foundations","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Effect of Incomplete Solution Treatment on the Tensile Behavior and Mechanical Anisotropy of 2195 Aluminum Lithium Alloy\",\"authors\":\"Wesley R Walker, R. Marloth, Ye Thura Hein, O. Es-Said\",\"doi\":\"10.4028/www.scientific.net/DF.22.109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aimed to characterize the effects of incomplete solution treatment time on the tensile behavior of 2195 Al-Li alloy. Two sets of plates of 2195 Al-Li alloy received solution heat treatment. One set received the prescribed treatment, held in the furnace for 30 minutes after the material had reached 507°C. The other set was in the furnace for only 30 minutes and did not reach 507°C until after about 15 to 20 minutes. Both set of plates were water quenched. Samples from the plates were then stretched 2.5-3% or 6%, rolled 6%, and rolled 24%, at 0°, 45°, and 90° relative to the rolling direction of the as-received material. The samples were aged at 143°C for 36 hours and air-cooled. Tensile specimens were milled out at 0°, 45°, and 90° relative to the original rolling direction. Tensile testing was performed on all samples. The incomplete heat treatment (incomplete solution treatment) resulted in a significant reduction in strength. This was probably due to the formation of fewer T1 precipitates after aging, thereby reducing the amount which could nucleate during cold work. The fully heat treated samples had higher percent yield strength, ultimate strength, and elongation.\",\"PeriodicalId\":311581,\"journal\":{\"name\":\"Diffusion Foundations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diffusion Foundations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/www.scientific.net/DF.22.109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diffusion Foundations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/DF.22.109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Effect of Incomplete Solution Treatment on the Tensile Behavior and Mechanical Anisotropy of 2195 Aluminum Lithium Alloy
This study aimed to characterize the effects of incomplete solution treatment time on the tensile behavior of 2195 Al-Li alloy. Two sets of plates of 2195 Al-Li alloy received solution heat treatment. One set received the prescribed treatment, held in the furnace for 30 minutes after the material had reached 507°C. The other set was in the furnace for only 30 minutes and did not reach 507°C until after about 15 to 20 minutes. Both set of plates were water quenched. Samples from the plates were then stretched 2.5-3% or 6%, rolled 6%, and rolled 24%, at 0°, 45°, and 90° relative to the rolling direction of the as-received material. The samples were aged at 143°C for 36 hours and air-cooled. Tensile specimens were milled out at 0°, 45°, and 90° relative to the original rolling direction. Tensile testing was performed on all samples. The incomplete heat treatment (incomplete solution treatment) resulted in a significant reduction in strength. This was probably due to the formation of fewer T1 precipitates after aging, thereby reducing the amount which could nucleate during cold work. The fully heat treated samples had higher percent yield strength, ultimate strength, and elongation.