通过分析推文的时空局部性来检测局部事件

Takuya Sugitani, Masumi Shirakawa, T. Hara, S. Nishio
{"title":"通过分析推文的时空局部性来检测局部事件","authors":"Takuya Sugitani, Masumi Shirakawa, T. Hara, S. Nishio","doi":"10.1109/WAINA.2013.246","DOIUrl":null,"url":null,"abstract":"In this paper, we study how to detect local events regardless of the size and the type using Twitter, a social networking service. Our method is based on the observation that relevant tweets are simultaneously posted from the place where a local event is happening. Specifically, our method first extracts the place where and the time when multiple tweets are posted by using clustering techniques and then detects the co-occurrence of key terms in each cluster to find local events. For determining key terms, our method also leverages spatiotemporal locality of tweets. From experimental results on tweet data from 9:00 to 15:00 on October 9, 2011, we confirmed the effectiveness of our method.","PeriodicalId":359251,"journal":{"name":"2013 27th International Conference on Advanced Information Networking and Applications Workshops","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Detecting Local Events by Analyzing Spatiotemporal Locality of Tweets\",\"authors\":\"Takuya Sugitani, Masumi Shirakawa, T. Hara, S. Nishio\",\"doi\":\"10.1109/WAINA.2013.246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study how to detect local events regardless of the size and the type using Twitter, a social networking service. Our method is based on the observation that relevant tweets are simultaneously posted from the place where a local event is happening. Specifically, our method first extracts the place where and the time when multiple tweets are posted by using clustering techniques and then detects the co-occurrence of key terms in each cluster to find local events. For determining key terms, our method also leverages spatiotemporal locality of tweets. From experimental results on tweet data from 9:00 to 15:00 on October 9, 2011, we confirmed the effectiveness of our method.\",\"PeriodicalId\":359251,\"journal\":{\"name\":\"2013 27th International Conference on Advanced Information Networking and Applications Workshops\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 27th International Conference on Advanced Information Networking and Applications Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WAINA.2013.246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 27th International Conference on Advanced Information Networking and Applications Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAINA.2013.246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在本文中,我们研究了如何使用Twitter(一种社交网络服务)检测本地事件,无论其大小和类型。我们的方法是基于这样一种观察,即相关的tweet是同时从本地事件发生的地方发布的。具体来说,我们的方法首先使用聚类技术提取多个tweet发布的地点和时间,然后检测每个聚类中关键词的共现情况,以查找本地事件。为了确定关键术语,我们的方法还利用了tweet的时空局部性。从2011年10月9日9:00 - 15:00的tweet数据的实验结果中,我们证实了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting Local Events by Analyzing Spatiotemporal Locality of Tweets
In this paper, we study how to detect local events regardless of the size and the type using Twitter, a social networking service. Our method is based on the observation that relevant tweets are simultaneously posted from the place where a local event is happening. Specifically, our method first extracts the place where and the time when multiple tweets are posted by using clustering techniques and then detects the co-occurrence of key terms in each cluster to find local events. For determining key terms, our method also leverages spatiotemporal locality of tweets. From experimental results on tweet data from 9:00 to 15:00 on October 9, 2011, we confirmed the effectiveness of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
WiMAX-WLAN Vehicle-to-Infrastructure Network Architecture during Fast Handover Process RFID Tracking for Urban Transportation Using EPCGlobal-based WebServices An Effective Attack Detection Approach in Wireless Mesh Networks Privacy Enhanced and Computationally Efficient HSK-AKA LTE Scheme On Scheduling Real-Time Multi-item Queries in Multi-RSU Vehicular Ad Hoc Networks (VANETs)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1