图像区域的噪声标签对齐

Yang Liu, Jing Liu, Zechao Li, Hanqing Lu
{"title":"图像区域的噪声标签对齐","authors":"Yang Liu, Jing Liu, Zechao Li, Hanqing Lu","doi":"10.1109/ICME.2012.143","DOIUrl":null,"url":null,"abstract":"With the permeation of Web 2.0, large-scale user contributed images with tags are easily available on social websites. How to align these social tags with image regions is a challenging task while no additional human intervention is considered, but a valuable one since the alignment can provide more detailed image semantic information and improve the accuracy of image retrieval. To this end, we propose a large margin discriminative model for automatically locating unaligned and possibly noisy image-level tags to the corresponding regions, and the model is optimized using concave-convex procedure (CCCP). In the model, each image is considered as a bag of segmented regions, associated with a set of candidate labeling vectors. Each labeling vector encodes a possible label arrangement for the regions of an image. To make the size of admissible labels tractable, we adopt an effective strategy based on the consistency between visual similarity and semantic correlation to generate a more compact set of labeling vectors. Extensive experiments on MSRC and SAIAPR TC-12 databases have been conducted to demonstrate the encouraging performance of our method comparing with other baseline methods.","PeriodicalId":273567,"journal":{"name":"2012 IEEE International Conference on Multimedia and Expo","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Noisy Tag Alignment with Image Regions\",\"authors\":\"Yang Liu, Jing Liu, Zechao Li, Hanqing Lu\",\"doi\":\"10.1109/ICME.2012.143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the permeation of Web 2.0, large-scale user contributed images with tags are easily available on social websites. How to align these social tags with image regions is a challenging task while no additional human intervention is considered, but a valuable one since the alignment can provide more detailed image semantic information and improve the accuracy of image retrieval. To this end, we propose a large margin discriminative model for automatically locating unaligned and possibly noisy image-level tags to the corresponding regions, and the model is optimized using concave-convex procedure (CCCP). In the model, each image is considered as a bag of segmented regions, associated with a set of candidate labeling vectors. Each labeling vector encodes a possible label arrangement for the regions of an image. To make the size of admissible labels tractable, we adopt an effective strategy based on the consistency between visual similarity and semantic correlation to generate a more compact set of labeling vectors. Extensive experiments on MSRC and SAIAPR TC-12 databases have been conducted to demonstrate the encouraging performance of our method comparing with other baseline methods.\",\"PeriodicalId\":273567,\"journal\":{\"name\":\"2012 IEEE International Conference on Multimedia and Expo\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Multimedia and Expo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2012.143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2012.143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着Web 2.0的普及,在社交网站上可以很容易地获得大规模用户贡献的带有标签的图像。如何将这些社交标签与图像区域对齐是一项具有挑战性的任务,因为没有额外的人为干预,但由于对齐可以提供更详细的图像语义信息并提高图像检索的准确性,因此这是一项有价值的任务。为此,我们提出了一个大间距判别模型,用于自动定位未对齐和可能有噪声的图像级标签到相应的区域,并使用凹凸过程(CCCP)对模型进行优化。在该模型中,每个图像都被视为一组分割的区域,并与一组候选标记向量相关联。每个标记向量对图像区域的可能标记排列进行编码。为了使可接受标签的大小易于处理,我们采用了一种基于视觉相似性和语义相关性一致性的有效策略来生成更紧凑的标记向量集。在MSRC和SAIAPR TC-12数据库上进行的大量实验表明,与其他基线方法相比,我们的方法具有令人鼓舞的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Noisy Tag Alignment with Image Regions
With the permeation of Web 2.0, large-scale user contributed images with tags are easily available on social websites. How to align these social tags with image regions is a challenging task while no additional human intervention is considered, but a valuable one since the alignment can provide more detailed image semantic information and improve the accuracy of image retrieval. To this end, we propose a large margin discriminative model for automatically locating unaligned and possibly noisy image-level tags to the corresponding regions, and the model is optimized using concave-convex procedure (CCCP). In the model, each image is considered as a bag of segmented regions, associated with a set of candidate labeling vectors. Each labeling vector encodes a possible label arrangement for the regions of an image. To make the size of admissible labels tractable, we adopt an effective strategy based on the consistency between visual similarity and semantic correlation to generate a more compact set of labeling vectors. Extensive experiments on MSRC and SAIAPR TC-12 databases have been conducted to demonstrate the encouraging performance of our method comparing with other baseline methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
View Independent Computer Lip-Reading EEG-based Dominance Level Recognition for Emotion-Enabled Interaction Area and Memory Efficient Architectures for 3D Blu-ray-compliant Multimedia Processors Effective Spatial Data Broadcasting Video Copy Detection Using a Soft Cascade of Multimodal Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1