{"title":"水电当量不同计算方法和公式的比较","authors":"Evelin Blom, L. Söder","doi":"10.1109/energycon53164.2022.9830320","DOIUrl":null,"url":null,"abstract":"Simplified models of hydropower systems are necessary for simulation of large power systems, long-term analysis, and future studies. One common simplification has been to aggregate all hydropower within an area based on historical data. Another option is to use mathematical so-caned hydropower Equivalents. Here, hydropower Equivalents represent an optimized model reduction of a more Detailed model depicting the complete hydropower system within a specific area. These Equivalents are computed based on a bilevel optimization problem formulation. In this paper, the impact different Equivalent model constraints have on the performance is analyzed via a novel investigation of new model formulations. Moreover, recent solution methods and a baseline aggregation of the hydropower from statistics are compared and evaluated for the first time. All bilevel Equivalents show a significantly better performance than the baseline aggregation; the accuracy in hourly power generation relative to the Detailed model is almost twice as high for all bilevel Eqmvalents.","PeriodicalId":106388,"journal":{"name":"2022 IEEE 7th International Energy Conference (ENERGYCON)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparison of Different Computational Methods and Formulations for Hydropower Equivalents\",\"authors\":\"Evelin Blom, L. Söder\",\"doi\":\"10.1109/energycon53164.2022.9830320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simplified models of hydropower systems are necessary for simulation of large power systems, long-term analysis, and future studies. One common simplification has been to aggregate all hydropower within an area based on historical data. Another option is to use mathematical so-caned hydropower Equivalents. Here, hydropower Equivalents represent an optimized model reduction of a more Detailed model depicting the complete hydropower system within a specific area. These Equivalents are computed based on a bilevel optimization problem formulation. In this paper, the impact different Equivalent model constraints have on the performance is analyzed via a novel investigation of new model formulations. Moreover, recent solution methods and a baseline aggregation of the hydropower from statistics are compared and evaluated for the first time. All bilevel Equivalents show a significantly better performance than the baseline aggregation; the accuracy in hourly power generation relative to the Detailed model is almost twice as high for all bilevel Eqmvalents.\",\"PeriodicalId\":106388,\"journal\":{\"name\":\"2022 IEEE 7th International Energy Conference (ENERGYCON)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 7th International Energy Conference (ENERGYCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/energycon53164.2022.9830320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 7th International Energy Conference (ENERGYCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/energycon53164.2022.9830320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of Different Computational Methods and Formulations for Hydropower Equivalents
Simplified models of hydropower systems are necessary for simulation of large power systems, long-term analysis, and future studies. One common simplification has been to aggregate all hydropower within an area based on historical data. Another option is to use mathematical so-caned hydropower Equivalents. Here, hydropower Equivalents represent an optimized model reduction of a more Detailed model depicting the complete hydropower system within a specific area. These Equivalents are computed based on a bilevel optimization problem formulation. In this paper, the impact different Equivalent model constraints have on the performance is analyzed via a novel investigation of new model formulations. Moreover, recent solution methods and a baseline aggregation of the hydropower from statistics are compared and evaluated for the first time. All bilevel Equivalents show a significantly better performance than the baseline aggregation; the accuracy in hourly power generation relative to the Detailed model is almost twice as high for all bilevel Eqmvalents.