基于图神经网络的作业车间调度深度强化学习

Kuo-Hao Ho, Ji-Han Wu, Chiang Fan, Yuan-Yu Wu, Sheng-I Chen, Ted T. Kuo, Feng Wang, I-Chen Wu
{"title":"基于图神经网络的作业车间调度深度强化学习","authors":"Kuo-Hao Ho, Ji-Han Wu, Chiang Fan, Yuan-Yu Wu, Sheng-I Chen, Ted T. Kuo, Feng Wang, I-Chen Wu","doi":"10.1109/ICCE-Taiwan58799.2023.10226873","DOIUrl":null,"url":null,"abstract":"Recently, deep reinforcement learning (DRL) methods attract much attention for solving job-shop scheduling problem (JSP), a NP-hard optimization problem. One of DRL methods is based on priority dispatching rules (PDRs), which is easy to be implemented, to dispatch operations to machines. In this paper, we propose a graph neural network (GNN) to enhance Luo's method [1] to choose a PDR to dispatch. With GNN, our method, trained with small JSP problems, also performs well in large JSP problems. Our experiments show that our method outperforms PDR methods and most of other DRL methods, particularly for large JSP problems.","PeriodicalId":112903,"journal":{"name":"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Reinforcement Learning Based on Graph Neural Networks for Job-shop Scheduling\",\"authors\":\"Kuo-Hao Ho, Ji-Han Wu, Chiang Fan, Yuan-Yu Wu, Sheng-I Chen, Ted T. Kuo, Feng Wang, I-Chen Wu\",\"doi\":\"10.1109/ICCE-Taiwan58799.2023.10226873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, deep reinforcement learning (DRL) methods attract much attention for solving job-shop scheduling problem (JSP), a NP-hard optimization problem. One of DRL methods is based on priority dispatching rules (PDRs), which is easy to be implemented, to dispatch operations to machines. In this paper, we propose a graph neural network (GNN) to enhance Luo's method [1] to choose a PDR to dispatch. With GNN, our method, trained with small JSP problems, also performs well in large JSP problems. Our experiments show that our method outperforms PDR methods and most of other DRL methods, particularly for large JSP problems.\",\"PeriodicalId\":112903,\"journal\":{\"name\":\"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-Taiwan58799.2023.10226873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Taiwan58799.2023.10226873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,深度强化学习(DRL)方法在解决作业车间调度问题(JSP)这一NP-hard优化问题中受到了广泛关注。DRL的一种方法是基于优先级调度规则(pdr)将操作分配给机器,该方法易于实现。在本文中,我们提出了一种图神经网络(GNN)来改进Luo的方法[1]来选择PDR进行调度。使用GNN,我们的方法在小型JSP问题中训练,在大型JSP问题中也表现良好。我们的实验表明,我们的方法优于PDR方法和大多数其他DRL方法,特别是对于大型JSP问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Reinforcement Learning Based on Graph Neural Networks for Job-shop Scheduling
Recently, deep reinforcement learning (DRL) methods attract much attention for solving job-shop scheduling problem (JSP), a NP-hard optimization problem. One of DRL methods is based on priority dispatching rules (PDRs), which is easy to be implemented, to dispatch operations to machines. In this paper, we propose a graph neural network (GNN) to enhance Luo's method [1] to choose a PDR to dispatch. With GNN, our method, trained with small JSP problems, also performs well in large JSP problems. Our experiments show that our method outperforms PDR methods and most of other DRL methods, particularly for large JSP problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing a visual IoT environment analysis system to support self-directed learning of students Smallest Botnet Firewall Building Problem and a Girvan-Newman Algorithm-Based Heuristic Solution Parametric Optimization of WEDM Process for Machining ANSI Steel Using Soft-Computing Methods Development of a Transmissive LED Touch Display for Engineered Marble Sewage Treatment Interactive Learning Game Design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1