在Azure ML上使用机器学习检测信用卡交易中的欺诈行为

Abhishek Shivanna, Sujan Ray, Khaldoon Alshouiliy, D. Agrawal
{"title":"在Azure ML上使用机器学习检测信用卡交易中的欺诈行为","authors":"Abhishek Shivanna, Sujan Ray, Khaldoon Alshouiliy, D. Agrawal","doi":"10.1109/UEMCON51285.2020.9298129","DOIUrl":null,"url":null,"abstract":"With the advancement of mobile and cloud technologies, there is a sharp increase in online transactions. Detecting fraudulent credit card transactions on a timely basis is a very critical and challenging problem in Financial Industry. Although online transactions are very convenient, they bring the risk of fraudulence on many aspects. Some of the key challenges in detecting fraudulence in online transactions include irregular behavioral patterns, skewed dataset i.e. high normal transaction to fraudulent transaction ratio, limited availability of data and dynamically changing environment. Every year people lose millions of dollars due to credit card fraud. There is a lack of quality research in this domain. We have used a dataset comprising of European cardholders which has 284,807 transactions to model our system. In this paper, we will design and develop credit card fraudulence detection system by training and testing two ML algorithms: Decision Forest (DF) and Decision Jungle (DJ) classifiers. Our results successfully demonstrate that DJ classifier delivers higher performance compared to DF classifier.","PeriodicalId":433609,"journal":{"name":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detection of Fraudulence in Credit Card Transactions using Machine Learning on Azure ML\",\"authors\":\"Abhishek Shivanna, Sujan Ray, Khaldoon Alshouiliy, D. Agrawal\",\"doi\":\"10.1109/UEMCON51285.2020.9298129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advancement of mobile and cloud technologies, there is a sharp increase in online transactions. Detecting fraudulent credit card transactions on a timely basis is a very critical and challenging problem in Financial Industry. Although online transactions are very convenient, they bring the risk of fraudulence on many aspects. Some of the key challenges in detecting fraudulence in online transactions include irregular behavioral patterns, skewed dataset i.e. high normal transaction to fraudulent transaction ratio, limited availability of data and dynamically changing environment. Every year people lose millions of dollars due to credit card fraud. There is a lack of quality research in this domain. We have used a dataset comprising of European cardholders which has 284,807 transactions to model our system. In this paper, we will design and develop credit card fraudulence detection system by training and testing two ML algorithms: Decision Forest (DF) and Decision Jungle (DJ) classifiers. Our results successfully demonstrate that DJ classifier delivers higher performance compared to DF classifier.\",\"PeriodicalId\":433609,\"journal\":{\"name\":\"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UEMCON51285.2020.9298129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON51285.2020.9298129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着移动和云技术的进步,网上交易急剧增加。及时发现信用卡欺诈交易是金融行业中一个非常关键和具有挑战性的问题。虽然网上交易非常方便,但在很多方面也带来了欺诈的风险。检测在线交易欺诈的一些关键挑战包括不规则的行为模式、倾斜的数据集(即正常交易与欺诈交易的高比率)、有限的数据可用性和动态变化的环境。每年人们因信用卡诈骗而损失数百万美元。这一领域缺乏高质量的研究。我们使用了一个由欧洲持卡人组成的数据集,其中有284,807笔交易来模拟我们的系统。在本文中,我们将通过训练和测试两种ML算法:决策森林(DF)和决策丛林(DJ)分类器来设计和开发信用卡欺诈检测系统。我们的结果成功地证明了DJ分类器比DF分类器提供了更高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of Fraudulence in Credit Card Transactions using Machine Learning on Azure ML
With the advancement of mobile and cloud technologies, there is a sharp increase in online transactions. Detecting fraudulent credit card transactions on a timely basis is a very critical and challenging problem in Financial Industry. Although online transactions are very convenient, they bring the risk of fraudulence on many aspects. Some of the key challenges in detecting fraudulence in online transactions include irregular behavioral patterns, skewed dataset i.e. high normal transaction to fraudulent transaction ratio, limited availability of data and dynamically changing environment. Every year people lose millions of dollars due to credit card fraud. There is a lack of quality research in this domain. We have used a dataset comprising of European cardholders which has 284,807 transactions to model our system. In this paper, we will design and develop credit card fraudulence detection system by training and testing two ML algorithms: Decision Forest (DF) and Decision Jungle (DJ) classifiers. Our results successfully demonstrate that DJ classifier delivers higher performance compared to DF classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Agile Edge Classification of Ocean Sounds EMG-based Hand Gesture Recognition by Deep Time-frequency Learning for Assisted Living & Rehabilitation A High Security Signature Algorithm Based on Kerberos for REST-style Cloud Storage Service A Comparison of Blockchain-Based Wireless Sensor Network Protocols Computer Vision based License Plate Detection for Automated Vehicle Parking Management System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1