基于半监督集成学习算法的非平衡数据网络入侵检测

Zhang Lin
{"title":"基于半监督集成学习算法的非平衡数据网络入侵检测","authors":"Zhang Lin","doi":"10.1109/NaNA53684.2021.00065","DOIUrl":null,"url":null,"abstract":"In many practical applications, due to the high cost of data annotation, the training dataset includes a large number of unlabeled samples and a small number of labeled samples. At the same time, there are a large number of normal behavior data and a small number of intrusion data in the network data. In order to solve this problem, this paper proposes a semi-supervised ensemble learning algorithm for imbalanced data. This algorithm uses the relationship between class samples to define the sampling probability of samples, and then constructs the initial training subset and the base classifier according to the sampling probability. Then, the evaluation index for imbalanced data is defined to evaluate and select base classifiers. Then the weighted voting method is used to integrate the selected base classifier. Finally, the simulation results of UCI data set and NSL-KDD data set show that the algorithm can improve the detection accuracy, especially the recognition rate of unknown intrusion behavior.","PeriodicalId":414672,"journal":{"name":"2021 International Conference on Networking and Network Applications (NaNA)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Network Intrusion Detection based of Semi-Supervised Ensemble Learning Algorithm for Imbalanced Data\",\"authors\":\"Zhang Lin\",\"doi\":\"10.1109/NaNA53684.2021.00065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many practical applications, due to the high cost of data annotation, the training dataset includes a large number of unlabeled samples and a small number of labeled samples. At the same time, there are a large number of normal behavior data and a small number of intrusion data in the network data. In order to solve this problem, this paper proposes a semi-supervised ensemble learning algorithm for imbalanced data. This algorithm uses the relationship between class samples to define the sampling probability of samples, and then constructs the initial training subset and the base classifier according to the sampling probability. Then, the evaluation index for imbalanced data is defined to evaluate and select base classifiers. Then the weighted voting method is used to integrate the selected base classifier. Finally, the simulation results of UCI data set and NSL-KDD data set show that the algorithm can improve the detection accuracy, especially the recognition rate of unknown intrusion behavior.\",\"PeriodicalId\":414672,\"journal\":{\"name\":\"2021 International Conference on Networking and Network Applications (NaNA)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Networking and Network Applications (NaNA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NaNA53684.2021.00065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Networking and Network Applications (NaNA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NaNA53684.2021.00065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在许多实际应用中,由于数据标注成本高,训练数据集包含大量未标记的样本和少量标记的样本。同时,网络数据中存在着大量的正常行为数据和少量的入侵数据。为了解决这一问题,本文提出了一种针对不平衡数据的半监督集成学习算法。该算法利用类样本之间的关系来定义样本的采样概率,然后根据采样概率构造初始训练子集和基分类器。然后,定义不平衡数据的评价指标来评价和选择基本分类器。然后采用加权投票法对选取的基分类器进行积分。最后,UCI数据集和NSL-KDD数据集的仿真结果表明,该算法可以提高检测精度,特别是对未知入侵行为的识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Network Intrusion Detection based of Semi-Supervised Ensemble Learning Algorithm for Imbalanced Data
In many practical applications, due to the high cost of data annotation, the training dataset includes a large number of unlabeled samples and a small number of labeled samples. At the same time, there are a large number of normal behavior data and a small number of intrusion data in the network data. In order to solve this problem, this paper proposes a semi-supervised ensemble learning algorithm for imbalanced data. This algorithm uses the relationship between class samples to define the sampling probability of samples, and then constructs the initial training subset and the base classifier according to the sampling probability. Then, the evaluation index for imbalanced data is defined to evaluate and select base classifiers. Then the weighted voting method is used to integrate the selected base classifier. Finally, the simulation results of UCI data set and NSL-KDD data set show that the algorithm can improve the detection accuracy, especially the recognition rate of unknown intrusion behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Covert Communication in D2D Underlaying Cellular Network Online Scheduling of Machine Learning Jobs in Edge-Cloud Networks Dual attention mechanism object tracking algorithm based on Fully-convolutional Siamese network Fatigue Detection Technology for Online Learning The Nearest Neighbor Algorithm for Balanced and Connected k-Center Problem under Modular Distance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1