蛋壳改性污泥生物炭的合成、表征及吸附性能研究

A. Kumi, Mona G. Ibrahim, M. Nasr, M. Fujii
{"title":"蛋壳改性污泥生物炭的合成、表征及吸附性能研究","authors":"A. Kumi, Mona G. Ibrahim, M. Nasr, M. Fujii","doi":"10.1109/ASET48392.2020.9118226","DOIUrl":null,"url":null,"abstract":"Sewage sludge-derived biochar (SDB) in recent times has increasingly been applied in the decontamination of effluents from households and industries due to its adsorptive properties. The SDB adsorbent is composed of a highly porous structure, and it contains multiple functional groups and exchangeable cations. However, it has been reported that the SDB texture could be improved to obtain large amounts of adsorption sites. In this work, the SDB material was treated using eggshell to obtain a novel adsorbent, namely eggshell-modified sludge-derived biochar (EMBC). The EMBC composite was characterized by scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, and X-Ray diffraction (XRD) spectroscopy. It was demonstrated that the Brunauer-Emmett-Teller (BET) surface area and pore-distribution properties of EMBC were enhanced compared to the unmodified SDB. Moreover, the chemical composition of EMBC was strongly associated with the proliferation of carbonate minerals, amine, and oxygen-containing functional groups such as C-O, C=O, - OH, and -COOH. EMBC was highly porous, containing rough surface and significant amounts of vacant sites. The Barrett-Joyner-Halenda model revealed that the pore sizes of EMBC were well distributed. Based on the results mentioned above, EMBC could be employed as a promising, low-cost, and alternative adsorbent material for the elimination of various pollutants from aqueous solutions; and that will be the focus of our future works.","PeriodicalId":237887,"journal":{"name":"2020 Advances in Science and Engineering Technology International Conferences (ASET)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, characterization and adsorption properties of sewage sludge derived biochar modified with eggshell\",\"authors\":\"A. Kumi, Mona G. Ibrahim, M. Nasr, M. Fujii\",\"doi\":\"10.1109/ASET48392.2020.9118226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sewage sludge-derived biochar (SDB) in recent times has increasingly been applied in the decontamination of effluents from households and industries due to its adsorptive properties. The SDB adsorbent is composed of a highly porous structure, and it contains multiple functional groups and exchangeable cations. However, it has been reported that the SDB texture could be improved to obtain large amounts of adsorption sites. In this work, the SDB material was treated using eggshell to obtain a novel adsorbent, namely eggshell-modified sludge-derived biochar (EMBC). The EMBC composite was characterized by scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, and X-Ray diffraction (XRD) spectroscopy. It was demonstrated that the Brunauer-Emmett-Teller (BET) surface area and pore-distribution properties of EMBC were enhanced compared to the unmodified SDB. Moreover, the chemical composition of EMBC was strongly associated with the proliferation of carbonate minerals, amine, and oxygen-containing functional groups such as C-O, C=O, - OH, and -COOH. EMBC was highly porous, containing rough surface and significant amounts of vacant sites. The Barrett-Joyner-Halenda model revealed that the pore sizes of EMBC were well distributed. Based on the results mentioned above, EMBC could be employed as a promising, low-cost, and alternative adsorbent material for the elimination of various pollutants from aqueous solutions; and that will be the focus of our future works.\",\"PeriodicalId\":237887,\"journal\":{\"name\":\"2020 Advances in Science and Engineering Technology International Conferences (ASET)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Advances in Science and Engineering Technology International Conferences (ASET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASET48392.2020.9118226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Advances in Science and Engineering Technology International Conferences (ASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASET48392.2020.9118226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,污泥生物炭由于其吸附特性越来越多地应用于家庭和工业废水的净化。SDB吸附剂由高孔隙结构组成,含有多个官能团和交换阳离子。然而,有报道称,可以改善SDB的结构以获得大量的吸附位点。本研究利用蛋壳对SDB材料进行处理,得到一种新型吸附剂,即蛋壳改性污泥衍生生物炭(EMBC)。采用扫描电镜(SEM)、傅里叶变换红外光谱(FTIR)和x射线衍射(XRD)对EMBC复合材料进行了表征。结果表明,与未改性的SDB相比,EMBC的比表面积和孔隙分布性能均有所提高。此外,EMBC的化学成分与碳酸盐矿物、胺和含氧官能团(如C-O、C=O、- OH和- cooh)的增殖密切相关。EMBC是高度多孔的,含有粗糙的表面和大量的空穴。Barrett-Joyner-Halenda模型显示EMBC的孔径分布均匀。基于上述结果,EMBC可以作为一种有前途的、低成本的、可替代的吸附材料,用于消除水溶液中的各种污染物;这将是我们未来工作的重点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis, characterization and adsorption properties of sewage sludge derived biochar modified with eggshell
Sewage sludge-derived biochar (SDB) in recent times has increasingly been applied in the decontamination of effluents from households and industries due to its adsorptive properties. The SDB adsorbent is composed of a highly porous structure, and it contains multiple functional groups and exchangeable cations. However, it has been reported that the SDB texture could be improved to obtain large amounts of adsorption sites. In this work, the SDB material was treated using eggshell to obtain a novel adsorbent, namely eggshell-modified sludge-derived biochar (EMBC). The EMBC composite was characterized by scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, and X-Ray diffraction (XRD) spectroscopy. It was demonstrated that the Brunauer-Emmett-Teller (BET) surface area and pore-distribution properties of EMBC were enhanced compared to the unmodified SDB. Moreover, the chemical composition of EMBC was strongly associated with the proliferation of carbonate minerals, amine, and oxygen-containing functional groups such as C-O, C=O, - OH, and -COOH. EMBC was highly porous, containing rough surface and significant amounts of vacant sites. The Barrett-Joyner-Halenda model revealed that the pore sizes of EMBC were well distributed. Based on the results mentioned above, EMBC could be employed as a promising, low-cost, and alternative adsorbent material for the elimination of various pollutants from aqueous solutions; and that will be the focus of our future works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fabrication of acoustic microfluidic platforms for particle manipulation Transient Analysis of DC Shunt Motor Supplied by Stand-alone PV System Employing FOCV for MPPT Verifying the Underutilizationof Geographic Information Systems (GIS) in the Realm of Landscape Architecture and Planning Investigation of Fall Hazards from Ablution Floors of Mosques in the UAE: Assessments of Traction and Texture Features and Their Effects on Slipperiness Emergence and Growth of Mobile Money in Modern India: A Study on the Effect of Mobile Money
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1