论语域合并的复杂性

Florent Bouchez, A. Darte, F. Rastello
{"title":"论语域合并的复杂性","authors":"Florent Bouchez, A. Darte, F. Rastello","doi":"10.1109/CGO.2007.26","DOIUrl":null,"url":null,"abstract":"Memory transfers are becoming more important to optimize, for both performance and power consumption. With this goal in mind, new register allocation schemes are developed, which revisit not only the spilling problem but also the coalescing problem. Indeed, a more aggressive strategy to avoid load/store instructions may increase the constraints to suppress (coalesce) move instructions. This paper is devoted to the complexity of the coalescing phase, in particular in the light of recent developments on the SSA form. We distinguish several optimizations that occur in coalescing heuristics: a) aggressive coalescing removes as many moves as possible, regardless of the colorability of the resulting interference graph; b) conservative coalescing removes as many moves as possible while keeping the colorability of the graph; c) incremental conservative coalescing removes one particular move while keeping the colorability of the graph; d) optimistic coalescing coalesces moves aggressively, then gives up about as few moves as possible so that the graph becomes colorable again. We almost completely classify the NP-completeness of these problems, discussing also on the structure of the interference graph: arbitrary, chordal, or k-colorable in a greedy fashion. We believe that such a study is a necessary step for designing new coalescing strategies","PeriodicalId":244171,"journal":{"name":"International Symposium on Code Generation and Optimization (CGO'07)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"On the Complexity of Register Coalescing\",\"authors\":\"Florent Bouchez, A. Darte, F. Rastello\",\"doi\":\"10.1109/CGO.2007.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Memory transfers are becoming more important to optimize, for both performance and power consumption. With this goal in mind, new register allocation schemes are developed, which revisit not only the spilling problem but also the coalescing problem. Indeed, a more aggressive strategy to avoid load/store instructions may increase the constraints to suppress (coalesce) move instructions. This paper is devoted to the complexity of the coalescing phase, in particular in the light of recent developments on the SSA form. We distinguish several optimizations that occur in coalescing heuristics: a) aggressive coalescing removes as many moves as possible, regardless of the colorability of the resulting interference graph; b) conservative coalescing removes as many moves as possible while keeping the colorability of the graph; c) incremental conservative coalescing removes one particular move while keeping the colorability of the graph; d) optimistic coalescing coalesces moves aggressively, then gives up about as few moves as possible so that the graph becomes colorable again. We almost completely classify the NP-completeness of these problems, discussing also on the structure of the interference graph: arbitrary, chordal, or k-colorable in a greedy fashion. We believe that such a study is a necessary step for designing new coalescing strategies\",\"PeriodicalId\":244171,\"journal\":{\"name\":\"International Symposium on Code Generation and Optimization (CGO'07)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Code Generation and Optimization (CGO'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CGO.2007.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Code Generation and Optimization (CGO'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGO.2007.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

对于性能和功耗而言,内存传输的优化变得越来越重要。为了实现这一目标,开发了新的寄存器分配方案,这些方案不仅重新考虑溢出问题,而且重新考虑合并问题。事实上,避免加载/存储指令的更积极的策略可能会增加抑制(合并)移动指令的约束。本文致力于合并阶段的复杂性,特别是在SSA形式的最新发展的光。我们区分了合并启发式中出现的几种优化:a)主动合并删除尽可能多的移动,而不管所产生的干涉图的可着色性;B)保守合并在保持图的可着色性的同时尽可能多地去除移动;C)增量保守合并去除一个特定的移动,同时保持图的可着色性;D)乐观聚并,聚并会积极地移动,然后尽可能少地放弃移动,这样图形就可以再次上色了。我们几乎完全分类了这些问题的np完备性,并讨论了干涉图的结构:任意的、弦的或k色的。我们认为,这样的研究是设计新的合并策略的必要步骤
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the Complexity of Register Coalescing
Memory transfers are becoming more important to optimize, for both performance and power consumption. With this goal in mind, new register allocation schemes are developed, which revisit not only the spilling problem but also the coalescing problem. Indeed, a more aggressive strategy to avoid load/store instructions may increase the constraints to suppress (coalesce) move instructions. This paper is devoted to the complexity of the coalescing phase, in particular in the light of recent developments on the SSA form. We distinguish several optimizations that occur in coalescing heuristics: a) aggressive coalescing removes as many moves as possible, regardless of the colorability of the resulting interference graph; b) conservative coalescing removes as many moves as possible while keeping the colorability of the graph; c) incremental conservative coalescing removes one particular move while keeping the colorability of the graph; d) optimistic coalescing coalesces moves aggressively, then gives up about as few moves as possible so that the graph becomes colorable again. We almost completely classify the NP-completeness of these problems, discussing also on the structure of the interference graph: arbitrary, chordal, or k-colorable in a greedy fashion. We believe that such a study is a necessary step for designing new coalescing strategies
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating Indirect Branch Handling Mechanisms in Software Dynamic Translation Systems Graph-Based Procedural Abstraction Parallel Programming Environment: A Key to Translating Tera-Scale Platforms into a Big Success Microarchitecture Sensitive Empirical Models for Compiler Optimizations Loop Optimization using Hierarchical Compilation and Kernel Decomposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1