G. P. R. Álvarez, Per-Olov Östberg, E. Elmroth, K. Antypas, R. Gerber, L. Ramakrishnan
{"title":"理解高性能计算中的工作异质性:NERSC案例研究","authors":"G. P. R. Álvarez, Per-Olov Östberg, E. Elmroth, K. Antypas, R. Gerber, L. Ramakrishnan","doi":"10.1109/CCGrid.2016.32","DOIUrl":null,"url":null,"abstract":"The high performance computing (HPC) scheduling landscape is changing. Increasingly, there are large scientific computations that include high-throughput, data-intensive, and stream-processing compute models. These jobs increase the workload heterogeneity, which presents challenges for classical tightly coupled MPI job oriented HPC schedulers. Thus, it is important to define new analyses methods to understand the heterogeneity of the workload, and its possible effect on the performance of current systems. In this paper, we present a methodology to assess the job heterogeneity in workloads and scheduling queues. We apply the method on the workloads of three current National Energy Research Scientific Computing Center (NERSC) systems in 2014. Finally, we present the results of such analysis, with an observation that heterogeneity might reduce predictability in the jobs' wait time.","PeriodicalId":103641,"journal":{"name":"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Towards Understanding Job Heterogeneity in HPC: A NERSC Case Study\",\"authors\":\"G. P. R. Álvarez, Per-Olov Östberg, E. Elmroth, K. Antypas, R. Gerber, L. Ramakrishnan\",\"doi\":\"10.1109/CCGrid.2016.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high performance computing (HPC) scheduling landscape is changing. Increasingly, there are large scientific computations that include high-throughput, data-intensive, and stream-processing compute models. These jobs increase the workload heterogeneity, which presents challenges for classical tightly coupled MPI job oriented HPC schedulers. Thus, it is important to define new analyses methods to understand the heterogeneity of the workload, and its possible effect on the performance of current systems. In this paper, we present a methodology to assess the job heterogeneity in workloads and scheduling queues. We apply the method on the workloads of three current National Energy Research Scientific Computing Center (NERSC) systems in 2014. Finally, we present the results of such analysis, with an observation that heterogeneity might reduce predictability in the jobs' wait time.\",\"PeriodicalId\":103641,\"journal\":{\"name\":\"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGrid.2016.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2016.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards Understanding Job Heterogeneity in HPC: A NERSC Case Study
The high performance computing (HPC) scheduling landscape is changing. Increasingly, there are large scientific computations that include high-throughput, data-intensive, and stream-processing compute models. These jobs increase the workload heterogeneity, which presents challenges for classical tightly coupled MPI job oriented HPC schedulers. Thus, it is important to define new analyses methods to understand the heterogeneity of the workload, and its possible effect on the performance of current systems. In this paper, we present a methodology to assess the job heterogeneity in workloads and scheduling queues. We apply the method on the workloads of three current National Energy Research Scientific Computing Center (NERSC) systems in 2014. Finally, we present the results of such analysis, with an observation that heterogeneity might reduce predictability in the jobs' wait time.