Zindine Mokeddem, D. Melati, D. González-Andrade, Thi Thuy Duong Dinh, M. Montesinos-Ballester, E. Cassan, D. Marris-Morini, Y. Grinberg, P. Cheben, Danxia Xu, J. Schmid, L. Vivien, A. V. Velasco, C. Alonso‐Ramos
{"title":"硅中不完美弹性傅里叶变换光谱的深度学习算法","authors":"Zindine Mokeddem, D. Melati, D. González-Andrade, Thi Thuy Duong Dinh, M. Montesinos-Ballester, E. Cassan, D. Marris-Morini, Y. Grinberg, P. Cheben, Danxia Xu, J. Schmid, L. Vivien, A. V. Velasco, C. Alonso‐Ramos","doi":"10.1109/GFP51802.2021.9673932","DOIUrl":null,"url":null,"abstract":"Silicon photonics spectrometers have great potential for applications in medicine and hazard detection. However, silicon spectrometers are very sensitive to fabrication imperfections and environmental conditions. Here, we study the use of deep-learning algorithms to improve tolerance of Fourier-transform spectrometers against fabrication imperfections and temperature variations.","PeriodicalId":158770,"journal":{"name":"2021 IEEE 17th International Conference on Group IV Photonics (GFP)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep-learning algorithms for imperfection-resilient Fourier-transform spectroscopy in silicon\",\"authors\":\"Zindine Mokeddem, D. Melati, D. González-Andrade, Thi Thuy Duong Dinh, M. Montesinos-Ballester, E. Cassan, D. Marris-Morini, Y. Grinberg, P. Cheben, Danxia Xu, J. Schmid, L. Vivien, A. V. Velasco, C. Alonso‐Ramos\",\"doi\":\"10.1109/GFP51802.2021.9673932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon photonics spectrometers have great potential for applications in medicine and hazard detection. However, silicon spectrometers are very sensitive to fabrication imperfections and environmental conditions. Here, we study the use of deep-learning algorithms to improve tolerance of Fourier-transform spectrometers against fabrication imperfections and temperature variations.\",\"PeriodicalId\":158770,\"journal\":{\"name\":\"2021 IEEE 17th International Conference on Group IV Photonics (GFP)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 17th International Conference on Group IV Photonics (GFP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GFP51802.2021.9673932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Conference on Group IV Photonics (GFP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GFP51802.2021.9673932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep-learning algorithms for imperfection-resilient Fourier-transform spectroscopy in silicon
Silicon photonics spectrometers have great potential for applications in medicine and hazard detection. However, silicon spectrometers are very sensitive to fabrication imperfections and environmental conditions. Here, we study the use of deep-learning algorithms to improve tolerance of Fourier-transform spectrometers against fabrication imperfections and temperature variations.