熟人还是伙伴?预测在线和基于位置的社交网络的伙伴关系

Michael Steurer, C. Trattner
{"title":"熟人还是伙伴?预测在线和基于位置的社交网络的伙伴关系","authors":"Michael Steurer, C. Trattner","doi":"10.1145/2492517.2492562","DOIUrl":null,"url":null,"abstract":"Existing approaches to predicting tie strength between users involve either online social networks or location-based social networks. To date, few studies combined these networks to investigate the intensity of social relations between users. In this paper we analyzed tie strength defined as partners and acquaintances in two domains: a location-based social network and an online social network (Second Life). We compared user pairs in terms of their partnership and found significant differences between partners and acquaintances. Following these observations, we evaluated the social proximity of users via supervised and unsupervised learning algorithms and established that homophilic features were most valuable for the prediction of partnership.","PeriodicalId":442230,"journal":{"name":"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Acquaintance or partner? Predicting partnership in online and location-based social networks\",\"authors\":\"Michael Steurer, C. Trattner\",\"doi\":\"10.1145/2492517.2492562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing approaches to predicting tie strength between users involve either online social networks or location-based social networks. To date, few studies combined these networks to investigate the intensity of social relations between users. In this paper we analyzed tie strength defined as partners and acquaintances in two domains: a location-based social network and an online social network (Second Life). We compared user pairs in terms of their partnership and found significant differences between partners and acquaintances. Following these observations, we evaluated the social proximity of users via supervised and unsupervised learning algorithms and established that homophilic features were most valuable for the prediction of partnership.\",\"PeriodicalId\":442230,\"journal\":{\"name\":\"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2492517.2492562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2492517.2492562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

现有的预测用户之间联系强度的方法包括在线社交网络或基于位置的社交网络。迄今为止,很少有研究结合这些网络来调查用户之间的社会关系强度。在本文中,我们分析了两个领域中定义为伙伴和熟人的联系强度:基于位置的社交网络和在线社交网络(第二人生)。我们比较了用户对的伙伴关系,发现了伙伴和熟人之间的显著差异。根据这些观察,我们通过监督和无监督学习算法评估了用户的社会接近性,并确定了同性特征对预测伙伴关系最有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Acquaintance or partner? Predicting partnership in online and location-based social networks
Existing approaches to predicting tie strength between users involve either online social networks or location-based social networks. To date, few studies combined these networks to investigate the intensity of social relations between users. In this paper we analyzed tie strength defined as partners and acquaintances in two domains: a location-based social network and an online social network (Second Life). We compared user pairs in terms of their partnership and found significant differences between partners and acquaintances. Following these observations, we evaluated the social proximity of users via supervised and unsupervised learning algorithms and established that homophilic features were most valuable for the prediction of partnership.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical analysis and implications of SNS search in under-developed countries Identifying unreliable sources of skill and competency information Assessing group cohesion in homophily networks Exploiting online social data in ontology learning for event tracking and emergency response Event identification for social streams using keyword-based evolving graph sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1