Edge AI的动手大学短期课程

Ioannis Stoitsis, P. Amanatidis, T. Lagkas, D. Karampatzakis
{"title":"Edge AI的动手大学短期课程","authors":"Ioannis Stoitsis, P. Amanatidis, T. Lagkas, D. Karampatzakis","doi":"10.1145/3575879.3575971","DOIUrl":null,"url":null,"abstract":"This paper aims to present a hands-on short course for Edge AI to university students of Computer Science and Engineering departments. Edge Computing is a modern, distributed computing architecture that brings data storage and computation closer to the source of data generation instead of being sent to the Cloud. This approach provides several benefits to a modern IoT network such as bandwidth savings and improved response time. We propose an Edge Computing short course that includes theoretical knowledge reinforced with hands-on laboratory exercises. Our course syllabus combines different cutting edge technologies like Embedded systems, Artificial Intelligence and Machine Learning. For the implementation of the Edge Computing laboratory exercises we selected the Raspberry Pi Single Board Computer (SBC) to inference ML workloads applying different configurations. The proposed short course provides students the opportunity to develop expertise in Edge Computing and enforce skill development to manage projects that may encounter in a professional carrier.","PeriodicalId":164036,"journal":{"name":"Proceedings of the 26th Pan-Hellenic Conference on Informatics","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hands-on University Short Course for Edge AI\",\"authors\":\"Ioannis Stoitsis, P. Amanatidis, T. Lagkas, D. Karampatzakis\",\"doi\":\"10.1145/3575879.3575971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to present a hands-on short course for Edge AI to university students of Computer Science and Engineering departments. Edge Computing is a modern, distributed computing architecture that brings data storage and computation closer to the source of data generation instead of being sent to the Cloud. This approach provides several benefits to a modern IoT network such as bandwidth savings and improved response time. We propose an Edge Computing short course that includes theoretical knowledge reinforced with hands-on laboratory exercises. Our course syllabus combines different cutting edge technologies like Embedded systems, Artificial Intelligence and Machine Learning. For the implementation of the Edge Computing laboratory exercises we selected the Raspberry Pi Single Board Computer (SBC) to inference ML workloads applying different configurations. The proposed short course provides students the opportunity to develop expertise in Edge Computing and enforce skill development to manage projects that may encounter in a professional carrier.\",\"PeriodicalId\":164036,\"journal\":{\"name\":\"Proceedings of the 26th Pan-Hellenic Conference on Informatics\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th Pan-Hellenic Conference on Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3575879.3575971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th Pan-Hellenic Conference on Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3575879.3575971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在为计算机科学与工程系的大学生提供一个实用的边缘人工智能短期课程。边缘计算是一种现代的分布式计算架构,它使数据存储和计算更接近数据生成源,而不是发送到云。这种方法为现代物联网网络提供了几个好处,例如节省带宽和改进响应时间。我们提出一个边缘计算短期课程,包括理论知识加强与动手实验室练习。我们的课程大纲结合了不同的前沿技术,如嵌入式系统、人工智能和机器学习。为了实现边缘计算实验室练习,我们选择了树莓派单板计算机(SBC)来推断应用不同配置的ML工作负载。拟议的短期课程为学生提供了发展边缘计算专业知识的机会,并加强技能发展,以管理在专业载体中可能遇到的项目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Hands-on University Short Course for Edge AI
This paper aims to present a hands-on short course for Edge AI to university students of Computer Science and Engineering departments. Edge Computing is a modern, distributed computing architecture that brings data storage and computation closer to the source of data generation instead of being sent to the Cloud. This approach provides several benefits to a modern IoT network such as bandwidth savings and improved response time. We propose an Edge Computing short course that includes theoretical knowledge reinforced with hands-on laboratory exercises. Our course syllabus combines different cutting edge technologies like Embedded systems, Artificial Intelligence and Machine Learning. For the implementation of the Edge Computing laboratory exercises we selected the Raspberry Pi Single Board Computer (SBC) to inference ML workloads applying different configurations. The proposed short course provides students the opportunity to develop expertise in Edge Computing and enforce skill development to manage projects that may encounter in a professional carrier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantum Machine Learning in Drug Discovery: Current State and Challenges CNN-based Segmentation and Classification of Sound Streams under realistic conditions Exam Wizard e-assessment platform: new features, field test results and instructor’s experience A Neuro-Symbolic Approach for Fault Diagnosis in Smart Power Grids A combination of a Proximity technique and Weighted average for LP Problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1