Zhi-Bo Wang, Lin Yang, Zhipei Huang, Jiankang Wu, Zhiqiang Zhang, Lixin Sun
{"title":"基于互补卡尔曼滤波的人体运动跟踪","authors":"Zhi-Bo Wang, Lin Yang, Zhipei Huang, Jiankang Wu, Zhiqiang Zhang, Lixin Sun","doi":"10.1109/BSN.2017.7936006","DOIUrl":null,"url":null,"abstract":"Miniaturized Inertial Measurement Unit (IMU) has been widely used in many motion capturing applications. In order to overcome stability and noise problems of IMU, a lot of efforts have been made to develop appropriate data fusion method to obtain reliable orientation estimation from IMU data. This article presents a method which models the errors of orientation, gyroscope bias and magnetic disturbance, and compensate the errors of state variables with complementary Kalman filter in a body motion capture system. Experimental results have shown that the proposed method significantly reduces the accumulative orientation estimation errors.","PeriodicalId":249670,"journal":{"name":"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"328 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Human motion tracking based on complementary Kalman filter\",\"authors\":\"Zhi-Bo Wang, Lin Yang, Zhipei Huang, Jiankang Wu, Zhiqiang Zhang, Lixin Sun\",\"doi\":\"10.1109/BSN.2017.7936006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Miniaturized Inertial Measurement Unit (IMU) has been widely used in many motion capturing applications. In order to overcome stability and noise problems of IMU, a lot of efforts have been made to develop appropriate data fusion method to obtain reliable orientation estimation from IMU data. This article presents a method which models the errors of orientation, gyroscope bias and magnetic disturbance, and compensate the errors of state variables with complementary Kalman filter in a body motion capture system. Experimental results have shown that the proposed method significantly reduces the accumulative orientation estimation errors.\",\"PeriodicalId\":249670,\"journal\":{\"name\":\"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":\"328 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2017.7936006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2017.7936006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Human motion tracking based on complementary Kalman filter
Miniaturized Inertial Measurement Unit (IMU) has been widely used in many motion capturing applications. In order to overcome stability and noise problems of IMU, a lot of efforts have been made to develop appropriate data fusion method to obtain reliable orientation estimation from IMU data. This article presents a method which models the errors of orientation, gyroscope bias and magnetic disturbance, and compensate the errors of state variables with complementary Kalman filter in a body motion capture system. Experimental results have shown that the proposed method significantly reduces the accumulative orientation estimation errors.