基于通信模式的异常网络流量检测

D. Le, Taeyoel Jeong, H. Roman, J. W. Hong
{"title":"基于通信模式的异常网络流量检测","authors":"D. Le, Taeyoel Jeong, H. Roman, J. W. Hong","doi":"10.1109/ISI.2012.6284297","DOIUrl":null,"url":null,"abstract":"We propose a novel approach to detect anomalous network traffic by analyzing communication patterns in time series. The method is based on graph theory concepts such as degree distribution and maximum degree, and we introduce the new concept of dK-2 distance [1]. In our approach, we use traffic dispersion graphs (TDGs) to extract communication structure [2]. By analyzing differences of TDG graphs in time series we are able to detect anomalous events such as botnet command and control communications, which cannot be identified by using volume-based approaches or flows/packets counters. We evaluate our approach with the 1999 DARPA intrusion detection data set and the network trace from POSTECH on July 2009.","PeriodicalId":199734,"journal":{"name":"2012 IEEE International Conference on Intelligence and Security Informatics","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Communication patterns based detection of anomalous network traffic\",\"authors\":\"D. Le, Taeyoel Jeong, H. Roman, J. W. Hong\",\"doi\":\"10.1109/ISI.2012.6284297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel approach to detect anomalous network traffic by analyzing communication patterns in time series. The method is based on graph theory concepts such as degree distribution and maximum degree, and we introduce the new concept of dK-2 distance [1]. In our approach, we use traffic dispersion graphs (TDGs) to extract communication structure [2]. By analyzing differences of TDG graphs in time series we are able to detect anomalous events such as botnet command and control communications, which cannot be identified by using volume-based approaches or flows/packets counters. We evaluate our approach with the 1999 DARPA intrusion detection data set and the network trace from POSTECH on July 2009.\",\"PeriodicalId\":199734,\"journal\":{\"name\":\"2012 IEEE International Conference on Intelligence and Security Informatics\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Intelligence and Security Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISI.2012.6284297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Intelligence and Security Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2012.6284297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种通过分析时间序列中的通信模式来检测异常网络流量的新方法。该方法基于度分布、最大度等图论概念,并引入了dK-2距离的新概念[1]。在我们的方法中,我们使用流量分散图(tdg)来提取通信结构[2]。通过分析时间序列中TDG图的差异,我们能够检测异常事件,例如僵尸网络命令和控制通信,这些事件无法通过使用基于卷的方法或流量/数据包计数器来识别。我们用1999年DARPA入侵检测数据集和2009年7月POSTECH的网络跟踪来评估我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Communication patterns based detection of anomalous network traffic
We propose a novel approach to detect anomalous network traffic by analyzing communication patterns in time series. The method is based on graph theory concepts such as degree distribution and maximum degree, and we introduce the new concept of dK-2 distance [1]. In our approach, we use traffic dispersion graphs (TDGs) to extract communication structure [2]. By analyzing differences of TDG graphs in time series we are able to detect anomalous events such as botnet command and control communications, which cannot be identified by using volume-based approaches or flows/packets counters. We evaluate our approach with the 1999 DARPA intrusion detection data set and the network trace from POSTECH on July 2009.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting criminal networks: SNA models are compared to proprietary models Securing cyberspace: Identifying key actors in hacker communities Emergency decision support using an agent-based modeling approach Payment card fraud: Challenges and solutions Extracting action knowledge in security informatics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1