基于元启发式算法优化HONN的isar图像识别

Asma Elyounsi, H. Tlijani, M. Bouhlel
{"title":"基于元启发式算法优化HONN的isar图像识别","authors":"Asma Elyounsi, H. Tlijani, M. Bouhlel","doi":"10.1109/SETIT54465.2022.9875763","DOIUrl":null,"url":null,"abstract":"In the field of ISAR Data extraction, many drawbacks appear and make this field a very challenging one. Therefore, using higher order neural networks (HONN) became an useful way to cope with problems like the inability to scale with the complexity of the problem and the sluggish converge rate that results in a lengthy training period. The Functional Link Artificial Neural Network (FLANN), a higher order neural network, was optimized in this paper using a revolutionary metaheuristic inspired by the Firefly algorithm to identify radar targets. Results from experiments demonstrate the effectiveness of the training method.","PeriodicalId":126155,"journal":{"name":"2022 IEEE 9th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ISAR-Image recognition using optimized HONN by a Metaheuristic algorithm\",\"authors\":\"Asma Elyounsi, H. Tlijani, M. Bouhlel\",\"doi\":\"10.1109/SETIT54465.2022.9875763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of ISAR Data extraction, many drawbacks appear and make this field a very challenging one. Therefore, using higher order neural networks (HONN) became an useful way to cope with problems like the inability to scale with the complexity of the problem and the sluggish converge rate that results in a lengthy training period. The Functional Link Artificial Neural Network (FLANN), a higher order neural network, was optimized in this paper using a revolutionary metaheuristic inspired by the Firefly algorithm to identify radar targets. Results from experiments demonstrate the effectiveness of the training method.\",\"PeriodicalId\":126155,\"journal\":{\"name\":\"2022 IEEE 9th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 9th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SETIT54465.2022.9875763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 9th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SETIT54465.2022.9875763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在ISAR数据提取领域中,存在着许多缺陷,使其成为一个非常具有挑战性的领域。因此,使用高阶神经网络(HONN)成为一种有效的方法来应对诸如无法随问题的复杂性进行缩放以及收敛速度缓慢导致训练周期过长等问题。本文采用一种革命性的元启发式算法,在Firefly算法的启发下,对高阶神经网络FLANN进行了优化,用于雷达目标识别。实验结果证明了该训练方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ISAR-Image recognition using optimized HONN by a Metaheuristic algorithm
In the field of ISAR Data extraction, many drawbacks appear and make this field a very challenging one. Therefore, using higher order neural networks (HONN) became an useful way to cope with problems like the inability to scale with the complexity of the problem and the sluggish converge rate that results in a lengthy training period. The Functional Link Artificial Neural Network (FLANN), a higher order neural network, was optimized in this paper using a revolutionary metaheuristic inspired by the Firefly algorithm to identify radar targets. Results from experiments demonstrate the effectiveness of the training method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Comparison of Machine Learning Methods for best Accuracy COVID-19 Diagnosis Using Chest X-Ray Images Design and Simulation of a PV System Controlled through a Hybrid INC-PSO Algorithm using XSG Tool Analysing ICT Initiatives towards Smart Policing to Assist African Law Enforcement in Combating Cybercrimes Preliminary Study Of A Smart Computer System For Scholar Support Distributed Consensus Control for Multi-Agent Oscillatory Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1