{"title":"提高军事系统的可靠性和作战可用性","authors":"Y. Macheret, Philipp Koehn, D. Sparrow","doi":"10.1109/AERO.2005.1559700","DOIUrl":null,"url":null,"abstract":"Achieving high reliability is one of the major objectives in the development of the future combat system (FCS) family of military vehicles. The proposed solution to achieve this objective is a prognostics-based approach characterized by a capability to monitor the status of mission-critical components and forecast the future state of the FCS system. In this paper, two approaches for achieving and maintaining high operational availability of military systems are analyzed and compared: overhaul and prognostics asset management strategies. It is shown that the prognostics approach leads to improved operational availability by anticipating failure and reducing administrative and logistics delays. In addition, the prognostics capability allows intelligent maintenance that is, replacing only those parts whose remaining lifetime reached the critical value. In this case, the improved operational availability is achieved at a significantly lower cost (number of spares) compared to that of the overhaul maintenance strategy. The prognostics approach also leads to a reduced risk of failure during the upcoming missions, since it allows field commanders to select only those platforms whose remaining life exceeds the duration of the upcoming mission","PeriodicalId":117223,"journal":{"name":"2005 IEEE Aerospace Conference","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Improving reliability and operational availability of military systems\",\"authors\":\"Y. Macheret, Philipp Koehn, D. Sparrow\",\"doi\":\"10.1109/AERO.2005.1559700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Achieving high reliability is one of the major objectives in the development of the future combat system (FCS) family of military vehicles. The proposed solution to achieve this objective is a prognostics-based approach characterized by a capability to monitor the status of mission-critical components and forecast the future state of the FCS system. In this paper, two approaches for achieving and maintaining high operational availability of military systems are analyzed and compared: overhaul and prognostics asset management strategies. It is shown that the prognostics approach leads to improved operational availability by anticipating failure and reducing administrative and logistics delays. In addition, the prognostics capability allows intelligent maintenance that is, replacing only those parts whose remaining lifetime reached the critical value. In this case, the improved operational availability is achieved at a significantly lower cost (number of spares) compared to that of the overhaul maintenance strategy. The prognostics approach also leads to a reduced risk of failure during the upcoming missions, since it allows field commanders to select only those platforms whose remaining life exceeds the duration of the upcoming mission\",\"PeriodicalId\":117223,\"journal\":{\"name\":\"2005 IEEE Aerospace Conference\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE Aerospace Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO.2005.1559700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2005.1559700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving reliability and operational availability of military systems
Achieving high reliability is one of the major objectives in the development of the future combat system (FCS) family of military vehicles. The proposed solution to achieve this objective is a prognostics-based approach characterized by a capability to monitor the status of mission-critical components and forecast the future state of the FCS system. In this paper, two approaches for achieving and maintaining high operational availability of military systems are analyzed and compared: overhaul and prognostics asset management strategies. It is shown that the prognostics approach leads to improved operational availability by anticipating failure and reducing administrative and logistics delays. In addition, the prognostics capability allows intelligent maintenance that is, replacing only those parts whose remaining lifetime reached the critical value. In this case, the improved operational availability is achieved at a significantly lower cost (number of spares) compared to that of the overhaul maintenance strategy. The prognostics approach also leads to a reduced risk of failure during the upcoming missions, since it allows field commanders to select only those platforms whose remaining life exceeds the duration of the upcoming mission