{"title":"基于矩阵旋转-广义回归神经网络的石油管道数据预测","authors":"Shengyang Yan, Zhang Jing, Sun Shuangshuang","doi":"10.1109/GCIS.2012.17","DOIUrl":null,"url":null,"abstract":"This paper presents a new approach for petroleum pipeline data prediction. In order to obtain correlation coefficient matrix of variables of petroleum pipeline monitoring data monthly, a novel method of matrix rotation-generalized regression neural network for petroleum pipeline data prediction is proposed. The simulation analysis demonstrates that the model is not only more precise, but also more effective and feasible.","PeriodicalId":337629,"journal":{"name":"2012 Third Global Congress on Intelligent Systems","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Prediction of Petroleum Pipeline Data Based on Matrix Rotation-Generalized Regression Neural Network\",\"authors\":\"Shengyang Yan, Zhang Jing, Sun Shuangshuang\",\"doi\":\"10.1109/GCIS.2012.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new approach for petroleum pipeline data prediction. In order to obtain correlation coefficient matrix of variables of petroleum pipeline monitoring data monthly, a novel method of matrix rotation-generalized regression neural network for petroleum pipeline data prediction is proposed. The simulation analysis demonstrates that the model is not only more precise, but also more effective and feasible.\",\"PeriodicalId\":337629,\"journal\":{\"name\":\"2012 Third Global Congress on Intelligent Systems\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Third Global Congress on Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCIS.2012.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third Global Congress on Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCIS.2012.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Prediction of Petroleum Pipeline Data Based on Matrix Rotation-Generalized Regression Neural Network
This paper presents a new approach for petroleum pipeline data prediction. In order to obtain correlation coefficient matrix of variables of petroleum pipeline monitoring data monthly, a novel method of matrix rotation-generalized regression neural network for petroleum pipeline data prediction is proposed. The simulation analysis demonstrates that the model is not only more precise, but also more effective and feasible.