适配移动平台性别年龄识别系统

Ming Yang, Kai Yu
{"title":"适配移动平台性别年龄识别系统","authors":"Ming Yang, Kai Yu","doi":"10.1109/IVSURV.2011.6157033","DOIUrl":null,"url":null,"abstract":"Human gender and age recognition is an emerging application for intelligent video analysis. However, offline pretrained recognition models often show degraded performance in a specific application scenario. To alleviate this issue, this paper presents a client-server system design adapting gender and age recognition models for mobile platforms. Specifically, the client program on Android smart phones streams face images to a cloud computing service where the recognition models based on convolutional neural networks are adapted leveraging the face correspondences in successive frames as weak supervision. The prototype system demonstrates the proposed design effectively reduces estimation variances and enhances user experiences.","PeriodicalId":141829,"journal":{"name":"2011 Third Chinese Conference on Intelligent Visual Surveillance","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adapting gender and age recognition system for mobile platforms\",\"authors\":\"Ming Yang, Kai Yu\",\"doi\":\"10.1109/IVSURV.2011.6157033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human gender and age recognition is an emerging application for intelligent video analysis. However, offline pretrained recognition models often show degraded performance in a specific application scenario. To alleviate this issue, this paper presents a client-server system design adapting gender and age recognition models for mobile platforms. Specifically, the client program on Android smart phones streams face images to a cloud computing service where the recognition models based on convolutional neural networks are adapted leveraging the face correspondences in successive frames as weak supervision. The prototype system demonstrates the proposed design effectively reduces estimation variances and enhances user experiences.\",\"PeriodicalId\":141829,\"journal\":{\"name\":\"2011 Third Chinese Conference on Intelligent Visual Surveillance\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Third Chinese Conference on Intelligent Visual Surveillance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVSURV.2011.6157033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Third Chinese Conference on Intelligent Visual Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVSURV.2011.6157033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

人类性别和年龄识别是智能视频分析的一个新兴应用。然而,离线预训练的识别模型在特定的应用场景中往往表现出性能下降。为了解决这一问题,本文提出了一种适应移动平台性别和年龄识别模型的客户端-服务器系统设计。具体来说,Android智能手机上的客户端程序将人脸图像流式传输到云计算服务,云计算服务采用基于卷积神经网络的识别模型,利用连续帧中的人脸对应作为弱监督。原型系统证明了所提出的设计有效地减少了估计偏差并增强了用户体验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adapting gender and age recognition system for mobile platforms
Human gender and age recognition is an emerging application for intelligent video analysis. However, offline pretrained recognition models often show degraded performance in a specific application scenario. To alleviate this issue, this paper presents a client-server system design adapting gender and age recognition models for mobile platforms. Specifically, the client program on Android smart phones streams face images to a cloud computing service where the recognition models based on convolutional neural networks are adapted leveraging the face correspondences in successive frames as weak supervision. The prototype system demonstrates the proposed design effectively reduces estimation variances and enhances user experiences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DSP-based incremental histogram calculation and particle filter tracking algorithm and its implementation People counting using combined feature A multi-faces tracking and recognition framework for surveillance system EK-means tracker: A pixel-wise tracking algorithm using kinect Children tantrum behaviour analysis based on Kinect sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1