Hadoop MapReduce自动分配任务槽位

Kun Wang, B. Tan, Juwei Shi, Bo Yang
{"title":"Hadoop MapReduce自动分配任务槽位","authors":"Kun Wang, B. Tan, Juwei Shi, Bo Yang","doi":"10.1145/2377978.2377982","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem caused by fixed assignment of task slots in Hadoop MapReduce. It is infeasible to manually configure optimal task slots since the characteristics of various workloads are different. We design and implement an automatic control mechanism to dynamically assign task slots based on the resource utilization on each Task Tracker node. The assignment takes the lag period into account. It can improve the cluster-wide resource utilization and avoid contention. Experimental results show that our implementation can dynamically adjust the task slots capacity to the optimal setting in runtime. In some case such as Word Count, our control mechanism outperforms the current Hadoop with optimal task slots configuration found by manual tuning.","PeriodicalId":231147,"journal":{"name":"Proceedings of the 1st Workshop on Architectures and Systems for Big Data","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Automatic task slots assignment in Hadoop MapReduce\",\"authors\":\"Kun Wang, B. Tan, Juwei Shi, Bo Yang\",\"doi\":\"10.1145/2377978.2377982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the problem caused by fixed assignment of task slots in Hadoop MapReduce. It is infeasible to manually configure optimal task slots since the characteristics of various workloads are different. We design and implement an automatic control mechanism to dynamically assign task slots based on the resource utilization on each Task Tracker node. The assignment takes the lag period into account. It can improve the cluster-wide resource utilization and avoid contention. Experimental results show that our implementation can dynamically adjust the task slots capacity to the optimal setting in runtime. In some case such as Word Count, our control mechanism outperforms the current Hadoop with optimal task slots configuration found by manual tuning.\",\"PeriodicalId\":231147,\"journal\":{\"name\":\"Proceedings of the 1st Workshop on Architectures and Systems for Big Data\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st Workshop on Architectures and Systems for Big Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2377978.2377982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st Workshop on Architectures and Systems for Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2377978.2377982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

在本文中,我们解决了Hadoop MapReduce中任务槽的固定分配问题。由于各种工作负载的特征不同,手动配置最优任务槽是不可行的。我们设计并实现了一种自动控制机制,根据每个任务跟踪器节点的资源利用率动态分配任务槽。分配将滞后期考虑在内。它可以提高集群范围内的资源利用率,避免争用。实验结果表明,我们的实现可以在运行时动态调整任务槽容量到最优设置。在某些情况下,例如Word Count,我们的控制机制通过手动调优找到的最佳任务槽配置优于当前的Hadoop。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic task slots assignment in Hadoop MapReduce
In this paper, we address the problem caused by fixed assignment of task slots in Hadoop MapReduce. It is infeasible to manually configure optimal task slots since the characteristics of various workloads are different. We design and implement an automatic control mechanism to dynamically assign task slots based on the resource utilization on each Task Tracker node. The assignment takes the lag period into account. It can improve the cluster-wide resource utilization and avoid contention. Experimental results show that our implementation can dynamically adjust the task slots capacity to the optimal setting in runtime. In some case such as Word Count, our control mechanism outperforms the current Hadoop with optimal task slots configuration found by manual tuning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Myriad: parallel data generation on shared-nothing architectures A collaborative memory system for high-performance and cost-effective clustered architectures Application-driven energy-efficient architecture explorations for big data Extending MPI to accelerators Automatic task slots assignment in Hadoop MapReduce
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1