基于web的自行车传感器数据的自动地理标注

S. Verstockt, Viktor Slavkovikj, Olivier Janssens, P. D. Potter, Jürgen Slowack, R. Walle
{"title":"基于web的自行车传感器数据的自动地理标注","authors":"S. Verstockt, Viktor Slavkovikj, Olivier Janssens, P. D. Potter, Jürgen Slowack, R. Walle","doi":"10.1145/2534732.2534744","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a multi-modal bike sensing setup for automatic geo-annotation of terrain types using web-based data enrichment. The proposed road/terrain classification system is mainly based on the analysis of volunteered geographic information gathered by bikers. By using participatory accelerometer and GPS sensor data collected from cyclists' smartphones, which is enriched with data from geographic web services, the proposed system is able to distinguish between 6 different terrain types. For the classification of the web-based enriched sensor data, the system employs a random decision forest (RDF), which compared favorably for the geo-annotation task against different classification algorithms. The system classifies every instance of road (over a 5 seconds interval) and maps the results onto the user collected GPS coordinates. Finally, based on all the collected instances, we can annotate geographic maps with the terrain types and create more advanced route statistics. The accuracy of the bike sensing system is 92% for 6-class terrain classification and 97% for 2-class on-road/off-road classification.","PeriodicalId":314116,"journal":{"name":"GEOCROWD '13","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Web-based enrichment of bike sensor data for automatic geo-annotation\",\"authors\":\"S. Verstockt, Viktor Slavkovikj, Olivier Janssens, P. D. Potter, Jürgen Slowack, R. Walle\",\"doi\":\"10.1145/2534732.2534744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe a multi-modal bike sensing setup for automatic geo-annotation of terrain types using web-based data enrichment. The proposed road/terrain classification system is mainly based on the analysis of volunteered geographic information gathered by bikers. By using participatory accelerometer and GPS sensor data collected from cyclists' smartphones, which is enriched with data from geographic web services, the proposed system is able to distinguish between 6 different terrain types. For the classification of the web-based enriched sensor data, the system employs a random decision forest (RDF), which compared favorably for the geo-annotation task against different classification algorithms. The system classifies every instance of road (over a 5 seconds interval) and maps the results onto the user collected GPS coordinates. Finally, based on all the collected instances, we can annotate geographic maps with the terrain types and create more advanced route statistics. The accuracy of the bike sensing system is 92% for 6-class terrain classification and 97% for 2-class on-road/off-road classification.\",\"PeriodicalId\":314116,\"journal\":{\"name\":\"GEOCROWD '13\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GEOCROWD '13\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2534732.2534744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GEOCROWD '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2534732.2534744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们描述了一个多模式的自行车传感装置,用于基于web的数据丰富的地形类型的自动地理标注。所提出的道路/地形分类系统主要基于对骑自行车者自愿收集的地理信息的分析。通过使用从骑行者的智能手机中收集的参与式加速度计和GPS传感器数据,并结合地理网络服务的数据,该系统能够区分6种不同的地形类型。对于基于web的丰富传感器数据的分类,该系统采用了随机决策森林(RDF),该算法相对于不同的分类算法更适合地理标注任务。该系统对每个道路实例进行分类(间隔超过5秒),并将结果映射到用户收集的GPS坐标上。最后,基于所有收集到的实例,我们可以用地形类型标注地理地图,并创建更高级的路线统计。对于6级地形分类,自行车传感系统的准确率为92%,对于2级道路/越野分类,该系统的准确率为97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Web-based enrichment of bike sensor data for automatic geo-annotation
In this paper, we describe a multi-modal bike sensing setup for automatic geo-annotation of terrain types using web-based data enrichment. The proposed road/terrain classification system is mainly based on the analysis of volunteered geographic information gathered by bikers. By using participatory accelerometer and GPS sensor data collected from cyclists' smartphones, which is enriched with data from geographic web services, the proposed system is able to distinguish between 6 different terrain types. For the classification of the web-based enriched sensor data, the system employs a random decision forest (RDF), which compared favorably for the geo-annotation task against different classification algorithms. The system classifies every instance of road (over a 5 seconds interval) and maps the results onto the user collected GPS coordinates. Finally, based on all the collected instances, we can annotate geographic maps with the terrain types and create more advanced route statistics. The accuracy of the bike sensing system is 92% for 6-class terrain classification and 97% for 2-class on-road/off-road classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-day and multi-stay travel planning using geo-tagged photos Extracting scenic routes from VGI data sources On quantifying qualitative geospatial data: a probabilistic approach Automatic gazetteer enrichment with user-geocoded data Web-based enrichment of bike sensor data for automatic geo-annotation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1