基于深度神经网络的流形正则化低秩矩阵分解声学模型参数约简

Hoon Chung, Jeom-ja Kang, Kiyoung Park, Sung Joo Lee, J. Park
{"title":"基于深度神经网络的流形正则化低秩矩阵分解声学模型参数约简","authors":"Hoon Chung, Jeom-ja Kang, Kiyoung Park, Sung Joo Lee, J. Park","doi":"10.1109/SLT.2016.7846333","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a deep neural network (DNN) model parameter reduction based on manifold regularized low rank matrix factorization to reduce the computational complexity of acoustic model for low resource embedded devices. One of the most common DNN model parameter reduction techniques is truncated singular value decomposition (TSVD). TSVD reduces the number of parameters by approximating a target matrix with a low rank one in terms of minimizing the Euclidean norm. In this work, we questioned whether the Euclidean norm is appropriate as objective function to factorize DNN matrices because DNN is known to learn nonlinear manifold of acoustic features. Therefore, in order to exploit the manifold structure for robust parameter reduction, we propose manifold regularized matrix factorization approach. The proposed method was evaluated on TIMIT phone recognition domain.","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Deep neural network based acoustic model parameter reduction using manifold regularized low rank matrix factorization\",\"authors\":\"Hoon Chung, Jeom-ja Kang, Kiyoung Park, Sung Joo Lee, J. Park\",\"doi\":\"10.1109/SLT.2016.7846333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a deep neural network (DNN) model parameter reduction based on manifold regularized low rank matrix factorization to reduce the computational complexity of acoustic model for low resource embedded devices. One of the most common DNN model parameter reduction techniques is truncated singular value decomposition (TSVD). TSVD reduces the number of parameters by approximating a target matrix with a low rank one in terms of minimizing the Euclidean norm. In this work, we questioned whether the Euclidean norm is appropriate as objective function to factorize DNN matrices because DNN is known to learn nonlinear manifold of acoustic features. Therefore, in order to exploit the manifold structure for robust parameter reduction, we propose manifold regularized matrix factorization approach. The proposed method was evaluated on TIMIT phone recognition domain.\",\"PeriodicalId\":281635,\"journal\":{\"name\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2016.7846333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了降低低资源嵌入式设备声学模型的计算复杂度,提出了一种基于流形正则化低秩矩阵分解的深度神经网络(DNN)模型参数约简方法。截断奇异值分解(TSVD)是最常用的深度神经网络模型参数约简技术之一。TSVD通过最小化欧几里得范数来逼近低秩的目标矩阵,从而减少了参数的数量。在这项工作中,我们质疑欧几里得范数是否适合作为目标函数来分解DNN矩阵,因为DNN已知学习声学特征的非线性流形。因此,为了利用流形结构进行鲁棒参数约简,我们提出了流形正则矩阵分解方法。在TIMIT手机识别域上对该方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep neural network based acoustic model parameter reduction using manifold regularized low rank matrix factorization
In this paper, we propose a deep neural network (DNN) model parameter reduction based on manifold regularized low rank matrix factorization to reduce the computational complexity of acoustic model for low resource embedded devices. One of the most common DNN model parameter reduction techniques is truncated singular value decomposition (TSVD). TSVD reduces the number of parameters by approximating a target matrix with a low rank one in terms of minimizing the Euclidean norm. In this work, we questioned whether the Euclidean norm is appropriate as objective function to factorize DNN matrices because DNN is known to learn nonlinear manifold of acoustic features. Therefore, in order to exploit the manifold structure for robust parameter reduction, we propose manifold regularized matrix factorization approach. The proposed method was evaluated on TIMIT phone recognition domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Further optimisations of constant Q cepstral processing for integrated utterance and text-dependent speaker verification Learning dialogue dynamics with the method of moments A study of speech distortion conditions in real scenarios for speech processing applications Comparing speaker independent and speaker adapted classification for word prominence detection Influence of corpus size and content on the perceptual quality of a unit selection MaryTTS voice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1