FitNet:用于实时姿态校正的深度神经网络驱动架构

Debosmit Neogi, Nataraj Das, S. Deb
{"title":"FitNet:用于实时姿态校正的深度神经网络驱动架构","authors":"Debosmit Neogi, Nataraj Das, S. Deb","doi":"10.1109/3ICT53449.2021.9582113","DOIUrl":null,"url":null,"abstract":"A methodology of real time pose estimation, which is believed to mitigate many orthopaedic adversaries pertaining to wrong posture, has been illustrated in this paper. Vast array of problems get reported that are known to arise due to maintaining a wrong posture during exercising or performing yoga, for a prolonged period of time. Several developments were made with regard to this issue, yet a major drawback was the presumption that a person during exercising or performing yoga or any kind of gym sessions, will keep the camera facing only at a fixed pre-determined portrayal direction. The approach, towards this problem, mainly deals with precise ROI detection, correct identification of human body joints and tracking down the motion of the body, all in real time. A major step towards converging to the solution is determining the angular separation between the joints and comparing them with the ones desired. Another important facet of the stated methodology is analysis of performance of the deep neural architecture in different camera positions. This is a major bottleneck for many different models that are intended to track posture of a person in real time. All these operations are done efficiently, with an appropriate trade-off between time complexity and performance metrics. At the end a robust feedback based support system has been obtained, that performs significantly better than the state of the art algorithm due to the precise transformation of input color space, contributing significantly in the field of orthopaedics by providing a feasible solution to avoid body strain and unnecessary pressure on joints during exercise.","PeriodicalId":133021,"journal":{"name":"2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"FitNet: A deep neural network driven architecture for real time posture rectification\",\"authors\":\"Debosmit Neogi, Nataraj Das, S. Deb\",\"doi\":\"10.1109/3ICT53449.2021.9582113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A methodology of real time pose estimation, which is believed to mitigate many orthopaedic adversaries pertaining to wrong posture, has been illustrated in this paper. Vast array of problems get reported that are known to arise due to maintaining a wrong posture during exercising or performing yoga, for a prolonged period of time. Several developments were made with regard to this issue, yet a major drawback was the presumption that a person during exercising or performing yoga or any kind of gym sessions, will keep the camera facing only at a fixed pre-determined portrayal direction. The approach, towards this problem, mainly deals with precise ROI detection, correct identification of human body joints and tracking down the motion of the body, all in real time. A major step towards converging to the solution is determining the angular separation between the joints and comparing them with the ones desired. Another important facet of the stated methodology is analysis of performance of the deep neural architecture in different camera positions. This is a major bottleneck for many different models that are intended to track posture of a person in real time. All these operations are done efficiently, with an appropriate trade-off between time complexity and performance metrics. At the end a robust feedback based support system has been obtained, that performs significantly better than the state of the art algorithm due to the precise transformation of input color space, contributing significantly in the field of orthopaedics by providing a feasible solution to avoid body strain and unnecessary pressure on joints during exercise.\",\"PeriodicalId\":133021,\"journal\":{\"name\":\"2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3ICT53449.2021.9582113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3ICT53449.2021.9582113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了一种实时姿态估计方法,该方法被认为可以减轻许多与错误姿态有关的骨科对手。据报道,由于在锻炼或做瑜伽时长时间保持错误的姿势,会产生大量的问题。关于这个问题有了一些发展,但一个主要的缺点是假设一个人在锻炼或做瑜伽或任何类型的健身课程时,将使相机只面向固定的预先确定的写照方向。针对这一问题,该方法主要涉及精确的ROI检测,正确识别人体关节,实时跟踪人体运动。收敛到解决方案的一个主要步骤是确定关节之间的角分离,并将它们与期望的关节进行比较。所述方法的另一个重要方面是分析深度神经结构在不同摄像机位置的性能。这是许多用于实时跟踪人的姿势的不同模型的主要瓶颈。所有这些操作都是有效地完成的,在时间复杂性和性能指标之间进行了适当的权衡。最后得到了一个基于鲁棒反馈的支持系统,由于输入颜色空间的精确变换,该系统的性能明显优于目前的算法,为避免运动时身体紧张和关节不必要的压力提供了可行的解决方案,在骨科领域做出了重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FitNet: A deep neural network driven architecture for real time posture rectification
A methodology of real time pose estimation, which is believed to mitigate many orthopaedic adversaries pertaining to wrong posture, has been illustrated in this paper. Vast array of problems get reported that are known to arise due to maintaining a wrong posture during exercising or performing yoga, for a prolonged period of time. Several developments were made with regard to this issue, yet a major drawback was the presumption that a person during exercising or performing yoga or any kind of gym sessions, will keep the camera facing only at a fixed pre-determined portrayal direction. The approach, towards this problem, mainly deals with precise ROI detection, correct identification of human body joints and tracking down the motion of the body, all in real time. A major step towards converging to the solution is determining the angular separation between the joints and comparing them with the ones desired. Another important facet of the stated methodology is analysis of performance of the deep neural architecture in different camera positions. This is a major bottleneck for many different models that are intended to track posture of a person in real time. All these operations are done efficiently, with an appropriate trade-off between time complexity and performance metrics. At the end a robust feedback based support system has been obtained, that performs significantly better than the state of the art algorithm due to the precise transformation of input color space, contributing significantly in the field of orthopaedics by providing a feasible solution to avoid body strain and unnecessary pressure on joints during exercise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Securing SCADA Systems against Cyber-Attacks using Artificial Intelligence Quality of Life Integrated Framework: Perspective of Cloud Computing Usage Reference Points Generated on Unit Hypersurfaces for MaOEAs Eye-Tracking Analysis with Deep Learning Method An Implementation and Evaluation of Basic Data Storage Topic for Content Provider Stage in Android Programming Learning Assistance System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1