海洋条件下气泡动力学的数值模拟

Chen Chong, Wang Mingjun, Tian Wenxi, Qiu Suizheng, Sun Guanghui
{"title":"海洋条件下气泡动力学的数值模拟","authors":"Chen Chong, Wang Mingjun, Tian Wenxi, Qiu Suizheng, Sun Guanghui","doi":"10.1115/ICONE26-81639","DOIUrl":null,"url":null,"abstract":"In recent years, nuclear power are widely used in the ship and submarine. Affected by the ocean wave, the bubble dynamic under ocean conditions may be different from stationary condition. In order to investigate the influence mechanism of ocean conditions, the single bubble rising in stagnant liquid under rolling conditions with different frequencies and amplitudes were calculated through CFD method. In present work, the typical ocean conditions such as rolling were realized through dynamic mesh method, this method could simulated the movement of container directly. The Volume-of-fluid (VOF) method was applied to track the interface between liquid and gas phases and the surface tension were calculated by Continuum Surface Force (CSF) method. We can draw the conclusions as follows: (1) the bubble tend to move laterally and periodically under rolling conditions, this may attributed to the additional force caused by rolling motion. (2) the period of lateral movement are in accordance with the rolling period, and the frequency and amplitude of bubble lateral movement may increasing as the decreasing of rolling period. (3) The amplitude of the bubble lateral displacement is proportional to the rolling amplitude. (4)larger bubbles have the higher rising velocity than the small ones, and the larger bubble are easier to break up which may promote the lateral movement.","PeriodicalId":289940,"journal":{"name":"Volume 9: Student Paper Competition","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Simulation of Bubble Dynamic Under Ocean Conditions\",\"authors\":\"Chen Chong, Wang Mingjun, Tian Wenxi, Qiu Suizheng, Sun Guanghui\",\"doi\":\"10.1115/ICONE26-81639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, nuclear power are widely used in the ship and submarine. Affected by the ocean wave, the bubble dynamic under ocean conditions may be different from stationary condition. In order to investigate the influence mechanism of ocean conditions, the single bubble rising in stagnant liquid under rolling conditions with different frequencies and amplitudes were calculated through CFD method. In present work, the typical ocean conditions such as rolling were realized through dynamic mesh method, this method could simulated the movement of container directly. The Volume-of-fluid (VOF) method was applied to track the interface between liquid and gas phases and the surface tension were calculated by Continuum Surface Force (CSF) method. We can draw the conclusions as follows: (1) the bubble tend to move laterally and periodically under rolling conditions, this may attributed to the additional force caused by rolling motion. (2) the period of lateral movement are in accordance with the rolling period, and the frequency and amplitude of bubble lateral movement may increasing as the decreasing of rolling period. (3) The amplitude of the bubble lateral displacement is proportional to the rolling amplitude. (4)larger bubbles have the higher rising velocity than the small ones, and the larger bubble are easier to break up which may promote the lateral movement.\",\"PeriodicalId\":289940,\"journal\":{\"name\":\"Volume 9: Student Paper Competition\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Student Paper Competition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ICONE26-81639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Student Paper Competition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICONE26-81639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,核动力被广泛应用于舰船和潜艇。受海浪的影响,气泡在海洋条件下的动力可能与静止条件不同。为了研究海洋条件的影响机制,采用CFD方法计算了不同频率和幅值的滚动条件下滞流液体中单个气泡的上升。在目前的工作中,通过动态网格法实现了典型的海洋条件,如翻滚,该方法可以直接模拟集装箱的运动。采用流体体积法(VOF)跟踪液气界面,采用连续曲面力法(CSF)计算表面张力。可以得出以下结论:(1)气泡在滚动条件下具有周期性的横向运动,这可能是由于滚动运动产生的附加力。(2)气泡横向运动周期与滚动周期一致,且气泡横向运动频率和幅度随滚动周期的减小而增大。(3)气泡横向位移幅值与滚动幅值成正比。(4)大气泡的上升速度高于小气泡,大气泡更容易破碎,从而促进横向运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Simulation of Bubble Dynamic Under Ocean Conditions
In recent years, nuclear power are widely used in the ship and submarine. Affected by the ocean wave, the bubble dynamic under ocean conditions may be different from stationary condition. In order to investigate the influence mechanism of ocean conditions, the single bubble rising in stagnant liquid under rolling conditions with different frequencies and amplitudes were calculated through CFD method. In present work, the typical ocean conditions such as rolling were realized through dynamic mesh method, this method could simulated the movement of container directly. The Volume-of-fluid (VOF) method was applied to track the interface between liquid and gas phases and the surface tension were calculated by Continuum Surface Force (CSF) method. We can draw the conclusions as follows: (1) the bubble tend to move laterally and periodically under rolling conditions, this may attributed to the additional force caused by rolling motion. (2) the period of lateral movement are in accordance with the rolling period, and the frequency and amplitude of bubble lateral movement may increasing as the decreasing of rolling period. (3) The amplitude of the bubble lateral displacement is proportional to the rolling amplitude. (4)larger bubbles have the higher rising velocity than the small ones, and the larger bubble are easier to break up which may promote the lateral movement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Heat Transfer and Fluid Flow Characteristics of One Side Heated Vertical Rectangular Channel Applied As Vessel Cooling System of VHTR Hydraulic Characteristics Research on SG Under Tube Plugging Operations Using FLUENT Study on Flow Structure in a Supersonic Steam Injector Electrochemical Measurement of Radio-Activated Metal Under High Temperature Condition Simulation Research on Thermal-Hydraulic Performance of a Natural Circulation Integrated Pressurized Water Reactor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1