钻孔雷达裂缝可探测性分析

Sixin Liu, X. Chang, L. Ran
{"title":"钻孔雷达裂缝可探测性分析","authors":"Sixin Liu, X. Chang, L. Ran","doi":"10.1109/ICGPR.2014.6970563","DOIUrl":null,"url":null,"abstract":"Fracture is an important geologic phenomenon which is crucial for petroleum and geothermal exploration and exists in various scale and geometry in nature. Borehole radar is an important tool which can image single fractures several to tens meters away from borehole in thousands of meters depth. However, the detectability of various fractures is not clear. We analyzed the radar response to a thin fracture using plane wave theory, and found the primary reflection and multiple reflections cancel each other. The fact increase the difficulty of fracture detection. We use sub-cell FDTD technique to synthesize borehole radar response to fractures from 0.0005m to 0.02m wide, and filled with water or air. It is found that water-filled vertical fracture is easier to be detected than air-filled fracture, and the fracture width affect the reflected signal very much. The wider the fracture, the strong the reflected signals. Also, large dynamic range is required for weaker fracture signals detection. This kind of simulation is helpful for the fracture detection and evaluation.","PeriodicalId":212710,"journal":{"name":"Proceedings of the 15th International Conference on Ground Penetrating Radar","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analysis of fractures detectability by borehole radar\",\"authors\":\"Sixin Liu, X. Chang, L. Ran\",\"doi\":\"10.1109/ICGPR.2014.6970563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fracture is an important geologic phenomenon which is crucial for petroleum and geothermal exploration and exists in various scale and geometry in nature. Borehole radar is an important tool which can image single fractures several to tens meters away from borehole in thousands of meters depth. However, the detectability of various fractures is not clear. We analyzed the radar response to a thin fracture using plane wave theory, and found the primary reflection and multiple reflections cancel each other. The fact increase the difficulty of fracture detection. We use sub-cell FDTD technique to synthesize borehole radar response to fractures from 0.0005m to 0.02m wide, and filled with water or air. It is found that water-filled vertical fracture is easier to be detected than air-filled fracture, and the fracture width affect the reflected signal very much. The wider the fracture, the strong the reflected signals. Also, large dynamic range is required for weaker fracture signals detection. This kind of simulation is helpful for the fracture detection and evaluation.\",\"PeriodicalId\":212710,\"journal\":{\"name\":\"Proceedings of the 15th International Conference on Ground Penetrating Radar\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 15th International Conference on Ground Penetrating Radar\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICGPR.2014.6970563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th International Conference on Ground Penetrating Radar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICGPR.2014.6970563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

裂缝是油气和地热勘探的重要地质现象,在自然界中以各种规模和几何形式存在。钻孔雷达是一种重要的成像工具,它可以在几千米深的情况下对距钻孔数米至数十米远的单个裂缝进行成像。然而,各种裂缝的可探测性尚不清楚。利用平面波理论分析了薄裂缝的雷达响应,发现一次反射和多次反射相互抵消。这增加了裂缝检测的难度。利用亚单元时域有限差分技术合成了裂缝宽度为0.0005m ~ 0.02m,裂缝内充填有水或空气的井眼雷达响应。研究发现,充水垂直裂缝比充气裂缝更容易被探测到,裂缝宽度对反射信号的影响很大。裂缝越宽,反射信号就越强。此外,对于较弱的裂缝信号检测,需要较大的动态范围。这种模拟有助于裂缝的检测和评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of fractures detectability by borehole radar
Fracture is an important geologic phenomenon which is crucial for petroleum and geothermal exploration and exists in various scale and geometry in nature. Borehole radar is an important tool which can image single fractures several to tens meters away from borehole in thousands of meters depth. However, the detectability of various fractures is not clear. We analyzed the radar response to a thin fracture using plane wave theory, and found the primary reflection and multiple reflections cancel each other. The fact increase the difficulty of fracture detection. We use sub-cell FDTD technique to synthesize borehole radar response to fractures from 0.0005m to 0.02m wide, and filled with water or air. It is found that water-filled vertical fracture is easier to be detected than air-filled fracture, and the fracture width affect the reflected signal very much. The wider the fracture, the strong the reflected signals. Also, large dynamic range is required for weaker fracture signals detection. This kind of simulation is helpful for the fracture detection and evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Creating virtual vertical radar profiles from surface reflection Ground Penetrating Radar data Modeling of GPR data in a stack of VTI-layers with an analytical code Three-dimensional non-contact subsurface radiotomography through a non-planar interface between media Intrinsic modeling of antenna array in near-field conditions Cross-correlation attribute analysis of GPR data for tunnel engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1