预测EPEX市场的波动性

A. Ciarreta, P. Muniain, A. Zarraga
{"title":"预测EPEX市场的波动性","authors":"A. Ciarreta, P. Muniain, A. Zarraga","doi":"10.1109/EEM.2017.7981963","DOIUrl":null,"url":null,"abstract":"This paper uses high-frequency intraday electricity prices from the EPEX market to estimate and forecast realised volatility. Variation is broken down into jump and continuous components using quadratic variation theory. Then several heterogeneous autoregressive models are estimated for the logarithmic and standard deviation transformations. GARCH structures are included in the error terms of the models when evidence of conditional heteroscedasticity is found. Model selection is based on various out-of-sample criteria. Under the logarithmic transformation the simplest model outperforms the rest. Under the standard deviation transformation, jump detection before model estimation is useful to improve forecasting.","PeriodicalId":416082,"journal":{"name":"2017 14th International Conference on the European Energy Market (EEM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting volatility in the EPEX market\",\"authors\":\"A. Ciarreta, P. Muniain, A. Zarraga\",\"doi\":\"10.1109/EEM.2017.7981963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper uses high-frequency intraday electricity prices from the EPEX market to estimate and forecast realised volatility. Variation is broken down into jump and continuous components using quadratic variation theory. Then several heterogeneous autoregressive models are estimated for the logarithmic and standard deviation transformations. GARCH structures are included in the error terms of the models when evidence of conditional heteroscedasticity is found. Model selection is based on various out-of-sample criteria. Under the logarithmic transformation the simplest model outperforms the rest. Under the standard deviation transformation, jump detection before model estimation is useful to improve forecasting.\",\"PeriodicalId\":416082,\"journal\":{\"name\":\"2017 14th International Conference on the European Energy Market (EEM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 14th International Conference on the European Energy Market (EEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EEM.2017.7981963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th International Conference on the European Energy Market (EEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEM.2017.7981963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文使用来自EPEX市场的高频日内电价来估计和预测已实现的波动率。利用二次变分理论将变分分解为跳跃分量和连续分量。然后对对数和标准差变换估计了几种异构自回归模型。当发现条件异方差的证据时,GARCH结构被包含在模型的误差项中。模型选择是基于各种样本外标准。在对数变换下,最简单的模型优于其他模型。在标准差变换下,在模型估计之前进行跳跃检测有助于提高预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forecasting volatility in the EPEX market
This paper uses high-frequency intraday electricity prices from the EPEX market to estimate and forecast realised volatility. Variation is broken down into jump and continuous components using quadratic variation theory. Then several heterogeneous autoregressive models are estimated for the logarithmic and standard deviation transformations. GARCH structures are included in the error terms of the models when evidence of conditional heteroscedasticity is found. Model selection is based on various out-of-sample criteria. Under the logarithmic transformation the simplest model outperforms the rest. Under the standard deviation transformation, jump detection before model estimation is useful to improve forecasting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Market integration VS temporal granularity: How to provide needed flexibility resources? FV-battery community energy systems: Economic, energy independence and network deferral analysis Adequacy of power capacity during winter peaks in Finland An analysis of market mechanism and bidding strategy for power balancing market mixed by conventional and renewable energy Network pricing for smart grids considering customers' diversified contribution to system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1